Search results
Results from the WOW.Com Content Network
OpenSSL is a software library for applications that provide secure communications over computer networks against eavesdropping, and identify the party at the other end. It is widely used by Internet servers, including the majority of HTTPS websites. OpenSSL contains an open-source implementation of the SSL and TLS protocols.
LibreSSL is an open-source implementation of the Transport Layer Security (TLS) protocol. The implementation is named after Secure Sockets Layer (SSL), the deprecated predecessor of TLS, for which support was removed in release 2.3.0.
This table denotes, if a cryptography library provides the technical requisites for FIPS 140, and the status of their FIPS 140 certification (according to NIST's CMVP search, [27] modules in process list [28] and implementation under test list). [29]
Several versions of the TLS protocol exist. SSL 2.0 is a deprecated [27] protocol version with significant weaknesses. SSL 3.0 (1996) and TLS 1.0 (1999) are successors with two weaknesses in CBC-padding that were explained in 2001 by Serge Vaudenay. [28]
Stunnel relies on the OpenSSL library to implement the underlying TLS or SSL protocol. Stunnel uses public-key cryptography with X.509 digital certificates to secure the SSL connection, and clients can optionally be authenticated via a certificate. [6] If linked against libwrap, it can be configured to act as a proxy–firewall service as well.
The Cryptographic Message Syntax (CMS) is the IETF's standard for cryptographically protected messages. It can be used by cryptographic schemes and protocols to digitally sign, digest, authenticate or encrypt any form of digital data.
An attack called POODLE [19] (late 2014) combines both a downgrade attack (to SSL 3.0) with a padding oracle attack on the older, insecure protocol to enable compromise of the transmitted data. In May 2016 it has been revealed in CVE-2016-2107 that the fix against Lucky Thirteen in OpenSSL introduced another timing-based padding oracle. [20] [21]
Most commercial certificate authority (CA) software uses PKCS #11 to access the CA signing key [clarification needed] or to enroll user certificates. Cross-platform software that needs to use smart cards uses PKCS #11, such as Mozilla Firefox and OpenSSL (using an extension).