Search results
Results from the WOW.Com Content Network
Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.
The process of semiconservative replication for the site of DNA replication is a fork-like DNA structure, the replication fork, where the DNA helix is open, or unwound, exposing unpaired DNA nucleotides for recognition and base pairing for the incorporation of free nucleotides into double-stranded DNA.
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
Each D-loop contains an origin of replication for the heavy strand. Full circular DNA replication is initiated at that origin and replicates in only one direction. The middle strand in the D-loop can be removed and a new one will be synthesized that is not terminated until the heavy strand is fully replicated, or the middle strand can serve as a primer for the heavy strand replication.
Rolling circle replication (RCR) is a process of unidirectional nucleic acid replication that can rapidly synthesize multiple copies of circular molecules of DNA or RNA, such as plasmids, the genomes of bacteriophages, and the circular RNA genome of viroids. Some eukaryotic viruses also replicate their DNA or RNA via the rolling circle mechanism.
Prokaryotic DNA Replication is the process by which a prokaryote duplicates its DNA into another copy that is passed on to daughter cells. [1] Although it is often studied in the model organism E. coli, other bacteria show many similarities. [2] Replication is bi-directional and originates at a single origin of replication (OriC). [3]
Studies in Xenopus revealed the Mcm2-7 complex is a critical component of DNA replication machinery. [6] Inactivation of temperature sensitive mutants of any of the Mcm proteins in "S. cerevisiae" caused DNA replication to halt if inactivation occurred during S phase, and prevented initiation of replication if inactivation occurred earlier. [6]
In 1999 it was reported that telomeres, which cap the end of chromosomes, terminate in a lariat-like structure termed a T-loop (Telomere-loop). [11] This is a loop of both strands of the chromosome which are joined to an earlier point in the double-stranded DNA by the 3' strand end invading the strand pair to form a D-loop.