Search results
Results from the WOW.Com Content Network
In mathematics, the extended real number system [a] is obtained from the real number system by adding two elements denoted + and [b] that are respectively greater and lower than every real number. This allows for treating the potential infinities of infinitely increasing sequences and infinitely decreasing series as actual infinities .
On one hand, the limit as n approaches infinity of a sequence {a n} is simply the limit at infinity of a function a(n) —defined on the natural numbers {n}. On the other hand, if X is the domain of a function f ( x ) and if the limit as n approaches infinity of f ( x n ) is L for every arbitrary sequence of points { x n } in X − x 0 which ...
Beyond Infinity : An Expedition to the Outer Limits of Mathematics is a popular mathematics book by Eugenia Cheng centered on concepts of infinity. It was published by Basic Books and (with a slightly different title) by Profile Books in 2017, [1] [2] [3] and in a paperback edition in 2018. [4]
The domain of f and g can be any set for which the limit is defined: e.g. real numbers, complex numbers, positive integers. The same notation is also used for other ways of passing to a limit: e.g. x → 0, x ↓ 0, | x | → 0. The way of passing to the limit is often not stated explicitly, if it is clear from the context.
A limit taking one of these indeterminate forms might tend to zero, might tend to any finite value, might tend to infinity, or might diverge, depending on the specific functions involved. A limit which unambiguously tends to infinity, for instance lim x → 0 1 / x 2 = ∞ , {\textstyle \lim _{x\to 0}1/x^{2}=\infty ,} is not considered ...
In particular, one can no longer talk about the limit of a function at a point, but rather a limit or the set of limits at a point. A function is continuous at a limit point p of and in its domain if and only if f ( p ) is the (or, in the general case, a ) limit of f ( x ) as x tends to p .
In electricity and magnetism, the long wavelength limit is the limiting case when the wavelength is much larger than the system size. In economics, two limiting cases of a demand curve or supply curve are those in which the elasticity is zero (the totally inelastic case) or infinity (the infinitely elastic case).
A graph that shows the number of balls in and out of the vase for the first ten iterations of the problem. The Ross–Littlewood paradox (also known as the balls and vase problem or the ping pong ball problem) is a hypothetical problem in abstract mathematics and logic designed to illustrate the paradoxical, or at least non-intuitive, nature of infinity.