Search results
Results from the WOW.Com Content Network
Circle with similar triangles: circumscribed side, inscribed side and complement, inscribed split side and complement. Let one side of an inscribed regular n-gon have length s n and touch the circle at points A and B. Let A′ be the point opposite A on the circle, so that A′A is a diameter, and A′AB is an inscribed triangle on a diameter.
Given a chord of length y and with sagitta of length x, since the sagitta intersects the midpoint of the chord, we know that it is a part of a diameter of the circle. Since the diameter is twice the radius, the "missing" part of the diameter is (2r − x) in length.
where C is the circumference of a circle, d is the diameter, and r is the radius. More generally, = where L and w are, respectively, the perimeter and the width of any curve of constant width. = where A is the area of a circle. More generally, =
A page from Archimedes' Measurement of a Circle. Measurement of a Circle or Dimension of the Circle (Greek: Κύκλου μέτρησις, Kuklou metrēsis) [1] is a treatise that consists of three propositions, probably made by Archimedes, ca. 250 BCE. [2] [3] The treatise is only a fraction of what was a longer work. [4] [5]
The number π (/ p aɪ /; spelled out as "pi") is a mathematical constant that is the ratio of a circle's circumference to its diameter, approximately equal to 3.14159.It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining π, to avoid relying on the definition of the length of a curve.
Thales’ theorem: if AC is a diameter and B is a point on the diameter's circle, the angle ∠ ABC is a right angle.. In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle.
where c ∈ ℝ n is the center of the circle (irrelevant since it disappears in the derivatives), a,b ∈ ℝ n are perpendicular vectors of length ρ (that is, a · a = b · b = ρ 2 and a · b = 0), and h : ℝ → ℝ is an arbitrary function which is twice differentiable at t. The relevant derivatives of g work out to be
In geometry, the major axis of an ellipse is its longest diameter: a line segment that runs through the center and both foci, with ends at the two most widely separated points of the perimeter. The semi-major axis ( major semiaxis ) is the longest semidiameter or one half of the major axis, and thus runs from the centre, through a focus , and ...