Search results
Results from the WOW.Com Content Network
Diatomic carbon (systematically named dicarbon and 1λ 2,2λ 2-ethene), is a green, gaseous inorganic chemical with the chemical formula C=C (also written [C 2] or C 2).It is kinetically unstable at ambient temperature and pressure, being removed through autopolymerisation.
It was described in 1844 by E. Peligot, although its distinctive bonding was not recognized for more than a century. [3] The first crystallographic study of a compound with a quadruple bond was provided by Soviet chemists for salts of Re 2 Cl 2− 8. [4] The very short Re–Re distance was noted.
The possible orbital symmetries are listed in the table below. For example, an orbital of B 1 symmetry (called a b 1 orbital with a small b since it is a one-electron function) is multiplied by -1 under the symmetry operations C 2 (rotation about the 2-fold rotation axis) and σ v '(yz) (reflection in the molecular plane).
In fact, the carbon atoms in the single bond need not be of the same hybridization. Carbon atoms can also form double bonds in compounds called alkenes or triple bonds in compounds called alkynes. A double bond is formed with an sp 2-hybridized orbital and a p-orbital that is not involved in the hybridization. A triple bond is formed with an sp ...
The possible screw axes are: 2 1, 3 1, 3 2, 4 1, 4 2, 4 3, 6 1, 6 2, 6 3, 6 4, and 6 5. Wherever there is both a rotation or screw axis n and a mirror or glide plane m along the same crystallographic direction, they are represented as a fraction or n/m.
Mass–energy equivalence states that all objects having mass, or massive objects, have a corresponding intrinsic energy, even when they are stationary.In the rest frame of an object, where by definition it is motionless and so has no momentum, the mass and energy are equal or they differ only by a constant factor, the speed of light squared (c 2).
Molecular symmetry is a fundamental concept in chemistry, as it can be used to predict or explain many of a molecule's chemical properties, such as whether or not it has a dipole moment, as well as its allowed spectroscopic transitions. To do this it is necessary to use group theory.
Cyanobacteria have three possible pathways through which they can metabolise 2-phosphoglycolate. They are unable to grow if all three pathways are knocked out, despite having a carbon concentrating mechanism that should dramatically lower the rate of photorespiration (see below) .