enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind. For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial ...

  3. Polynomial expansion - Wikipedia

    en.wikipedia.org/wiki/Polynomial_expansion

    In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition. Expansion of a polynomial expression can be obtained by repeatedly replacing subexpressions that multiply two other subexpressions, at least one of which is an addition, by the equivalent sum of products, continuing until the expression becomes a ...

  4. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    Polynomial factorization is one of the fundamental components of computer algebra systems. The first polynomial factorization algorithm was published by Theodor von Schubert in 1793. [1] Leopold Kronecker rediscovered Schubert's algorithm in 1882 and extended it to multivariate polynomials and coefficients in an algebraic extension.

  5. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    Squares are always congruent to 0, 1, 4, 5, 9, 16 modulo 20. The values repeat with each increase of a by 10. In this example, N is 17 mod 20, so subtracting 17 mod 20 (or adding 3), produces 3, 4, 7, 8, 12, and 19 modulo 20 for these values. It is apparent that only the 4 from this list can be a square.

  6. Hadamard factorization theorem - Wikipedia

    en.wikipedia.org/wiki/Hadamard_factorization_theorem

    Define the Hadamard canonical factors ():= = / Entire functions of finite order have Hadamard's canonical representation: [1] = = (/) where are those roots of that are not zero (), is the order of the zero of at = (the case = being taken to mean ()), a polynomial (whose degree we shall call ), and is the smallest non-negative integer such that the series = | | + converges.

  7. Factorization system - Wikipedia

    en.wikipedia.org/wiki/Factorization_system

    A weak factorization system (E, M) for a category C consists of two classes of morphisms E and M of C such that: [1] The class E is exactly the class of morphisms having the left lifting property with respect to each morphism in M. The class M is exactly the class of morphisms having the right lifting property with respect to each morphism in E.

  8. AOL

    search.aol.com

    The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.

  9. Sophie Germain's identity - Wikipedia

    en.wikipedia.org/wiki/Sophie_Germain's_identity

    [5] [6] The identity can be proven simply by multiplying the two terms of the factorization together, and verifying that their product equals the right hand side of the equality. [7] A proof without words is also possible based on multiple applications of the Pythagorean theorem. [1]