enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electron degeneracy pressure - Wikipedia

    en.wikipedia.org/wiki/Electron_degeneracy_pressure

    This is the pressure that prevents a white dwarf star from collapsing. A star exceeding this limit and without significant thermally generated pressure will continue to collapse to form either a neutron star or black hole, because the degeneracy pressure provided by the electrons is weaker than the inward pull of gravity.

  3. Degenerate matter - Wikipedia

    en.wikipedia.org/wiki/Degenerate_matter

    Above the Chandrasekhar limit, the gravitational pressure at the core exceeds the electron degeneracy pressure, and electrons begin to combine with protons to produce neutrons (via inverse beta decay, also termed electron capture). The result is an extremely compact star composed of "nuclear matter", which is predominantly a degenerate neutron ...

  4. Nuclear pasta - Wikipedia

    en.wikipedia.org/wiki/Nuclear_pasta

    Rather, the intense gravitational attraction of the compact mass overcomes the electron degeneracy pressure and causes electron capture to occur within the star. The result is a compact ball of nearly pure neutron matter with sparse protons and electrons interspersed, filling a space several thousand times smaller than the progenitor star. [4]

  5. Fermi gas - Wikipedia

    en.wikipedia.org/wiki/Fermi_gas

    Using the Fermi gas as a model, it is possible to calculate the Chandrasekhar limit, i.e. the maximum mass any star may acquire (without significant thermally generated pressure) before collapsing into a black hole or a neutron star. The latter, is a star mainly composed of neutrons, where the collapse is also avoided by neutron degeneracy ...

  6. Chandrasekhar limit - Wikipedia

    en.wikipedia.org/wiki/Chandrasekhar_limit

    Stars above the limit can become neutron stars or black holes. [7]: 74 The Chandrasekhar limit is a consequence of competition between gravity and electron degeneracy pressure. Electron degeneracy pressure is a quantum-mechanical effect arising from the Pauli exclusion principle.

  7. Nuclear matter - Wikipedia

    en.wikipedia.org/wiki/Nuclear_matter

    Nuclear matter is an idealized system of interacting nucleons (protons and neutrons) that exists in several phases of exotic matter that, as of yet, are not fully established. [2] It is not matter in an atomic nucleus, but a hypothetical substance consisting of a huge number of protons and neutrons held together by only nuclear forces and no ...

  8. Neutronium - Wikipedia

    en.wikipedia.org/wiki/Neutronium

    Cross-section of neutron star. Here, the core has neutrons or neutron-degenerate matter and quark matter.. Neutronium is used in popular physics literature [1] [2] to refer to the material present in the cores of neutron stars (stars which are too massive to be supported by electron degeneracy pressure and which collapse into a denser phase of matter).

  9. Plasma parameters - Wikipedia

    en.wikipedia.org/wiki/Plasma_parameters

    All quantities are in Gaussian units except energy and temperature which are in electronvolts.For the sake of simplicity, a single ionic species is assumed. The ion mass is expressed in units of the proton mass, = / and the ion charge in units of the elementary charge, = / (in the case of a fully ionized atom, equals to the respective atomic number).