enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degenerate matter - Wikipedia

    en.wikipedia.org/wiki/Degenerate_matter

    While degeneracy pressure usually dominates at extremely high densities, it is the ratio between degenerate pressure and thermal pressure which determines degeneracy. Given a sufficiently drastic increase in temperature (such as during a red giant star's helium flash ), matter can become non-degenerate without reducing its density.

  3. Neutron - Wikipedia

    en.wikipedia.org/wiki/Neutron

    This is the source of the degeneracy pressure which counteracts gravity in ... in particular the hydrogen found in water molecules. When a fast neutron collides with ...

  4. Fermi gas - Wikipedia

    en.wikipedia.org/wiki/Fermi_gas

    For example, this so-called degeneracy pressure stabilizes a neutron star (a Fermi gas of neutrons) or a white dwarf star (a Fermi gas of electrons) against the inward pull of gravity, which would ostensibly collapse the star into a black hole. Only when a star is sufficiently massive to overcome the degeneracy pressure can it collapse into a ...

  5. Electron degeneracy pressure - Wikipedia

    en.wikipedia.org/wiki/Electron_degeneracy_pressure

    This is the pressure that prevents a white dwarf star from collapsing. A star exceeding this limit and without significant thermally generated pressure will continue to collapse to form either a neutron star or black hole, because the degeneracy pressure provided by the electrons is weaker than the inward pull of gravity.

  6. High energy density physics - Wikipedia

    en.wikipedia.org/wiki/High_energy_density_physics

    Take as an example the birth and cooling of a neutron star. The central part of a star, ~8-20 times the mass of the Sun, fuses its way to iron and cannot go further since iron has the highest binding energy per nucleon of any element. As the iron core accumulates to ~1.4 solar masses, electron degeneracy pressure gives up against gravity and ...

  7. Neutronium - Wikipedia

    en.wikipedia.org/wiki/Neutronium

    Cross-section of neutron star. Here, the core has neutrons or neutron-degenerate matter and quark matter.. Neutronium is used in popular physics literature [1] [2] to refer to the material present in the cores of neutron stars (stars which are too massive to be supported by electron degeneracy pressure and which collapse into a denser phase of matter).

  8. Nuclear pasta - Wikipedia

    en.wikipedia.org/wiki/Nuclear_pasta

    Rather, the intense gravitational attraction of the compact mass overcomes the electron degeneracy pressure and causes electron capture to occur within the star. The result is a compact ball of nearly pure neutron matter with sparse protons and electrons interspersed, filling a space several thousand times smaller than the progenitor star. [4]

  9. Chandrasekhar limit - Wikipedia

    en.wikipedia.org/wiki/Chandrasekhar_limit

    Stars above the limit can become neutron stars or black holes. [7]: 74 The Chandrasekhar limit is a consequence of competition between gravity and electron degeneracy pressure. Electron degeneracy pressure is a quantum-mechanical effect arising from the Pauli exclusion principle.