enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degenerate matter - Wikipedia

    en.wikipedia.org/wiki/Degenerate_matter

    While degeneracy pressure usually dominates at extremely high densities, it is the ratio between degenerate pressure and thermal pressure which determines degeneracy. Given a sufficiently drastic increase in temperature (such as during a red giant star's helium flash ), matter can become non-degenerate without reducing its density.

  3. Fermi gas - Wikipedia

    en.wikipedia.org/wiki/Fermi_gas

    Using the Fermi gas as a model, it is possible to calculate the Chandrasekhar limit, i.e. the maximum mass any star may acquire (without significant thermally generated pressure) before collapsing into a black hole or a neutron star. The latter, is a star mainly composed of neutrons, where the collapse is also avoided by neutron degeneracy ...

  4. Electron degeneracy pressure - Wikipedia

    en.wikipedia.org/wiki/Electron_degeneracy_pressure

    This is the pressure that prevents a white dwarf star from collapsing. A star exceeding this limit and without significant thermally generated pressure will continue to collapse to form either a neutron star or black hole, because the degeneracy pressure provided by the electrons is weaker than the inward pull of gravity.

  5. Pauli exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Pauli_exclusion_principle

    Astronomy provides a spectacular demonstration of the effect of the Pauli principle, in the form of white dwarf and neutron stars. In both bodies, the atomic structure is disrupted by extreme pressure, but the stars are held in hydrostatic equilibrium by degeneracy pressure, also known as Fermi pressure.

  6. Chandrasekhar limit - Wikipedia

    en.wikipedia.org/wiki/Chandrasekhar_limit

    In the nonrelativistic case, electron degeneracy pressure gives rise to an equation of state of the form P = K 1 ρ 5/3, where P is the pressure, ρ is the mass density, and K 1 is a constant. Solving the hydrostatic equation leads to a model white dwarf that is a polytrope of index ⁠ 3 / 2 ⁠ – and therefore has radius inversely ...

  7. Tolman–Oppenheimer–Volkoff limit - Wikipedia

    en.wikipedia.org/wiki/Tolman–Oppenheimer...

    In a star less massive than the limit, the gravitational compression is balanced by short-range repulsive neutronneutron interactions mediated by the strong force and also by the quantum degeneracy pressure of neutrons, preventing collapse. [12]: 74 If its mass is above the limit, the star will collapse to some denser form.

  8. Gravitational collapse - Wikipedia

    en.wikipedia.org/wiki/Gravitational_collapse

    White dwarfs, in which gravity is opposed by electron degeneracy pressure [4] Neutron stars, in which gravity is opposed by neutron degeneracy pressure and short-range repulsive neutronneutron interactions mediated by the strong force; Black hole, in which there is no force strong enough to resist gravitational collapse

  9. Compact object - Wikipedia

    en.wikipedia.org/wiki/Compact_object

    They therefore provide neutron degeneracy pressure to support a neutron star against collapse. In addition, repulsive neutron-neutron interactions [ citation needed ] provide additional pressure. Like the Chandrasekhar limit for white dwarfs, there is a limiting mass for neutron stars: the Tolman–Oppenheimer–Volkoff limit , where these ...