enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scalar (physics) - Wikipedia

    en.wikipedia.org/wiki/Scalar_(physics)

    A scalar in physics and other areas of science is also a scalar in mathematics, as an element of a mathematical field used to define a vector space.For example, the magnitude (or length) of an electric field vector is calculated as the square root of its absolute square (the inner product of the electric field with itself); so, the inner product's result is an element of the mathematical field ...

  3. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    The concept of force makes the everyday notion of pushing or pulling mathematically precise. Because the magnitude and direction of a force are both important, force is a vector quantity. The SI unit of force is the newton (N), and force is often represented by the symbol F. Force plays an important role in classical mechanics.

  4. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    scalar Electrical conductivity: σ: Measure of a material's ability to conduct an electric current S/m L −3 M −1 T 3 I 2: scalar Electric potential: φ: Energy required to move a unit charge through an electric field from a reference point volt (V = J/C) L 2 M T −3 I −1: extensive, scalar Electrical resistance: R: Electric potential per ...

  5. Field (physics) - Wikipedia

    en.wikipedia.org/wiki/Field_(physics)

    A field can be classified as a scalar field, a vector field, a spinor field or a tensor field according to whether the represented physical quantity is a scalar, a vector, a spinor, or a tensor, respectively. A field has a consistent tensorial character wherever it is defined: i.e. a field cannot be a scalar field somewhere and a vector field ...

  6. Euclidean vector - Wikipedia

    en.wikipedia.org/wiki/Euclidean_vector

    Another quantity represented by a vector is force, since it has a magnitude and direction and follows the rules of vector addition. [7] Vectors also describe many other physical quantities, such as linear displacement, displacement , linear acceleration, angular acceleration , linear momentum , and angular momentum .

  7. Work (physics) - Wikipedia

    en.wikipedia.org/wiki/Work_(physics)

    This component of force can be described by the scalar quantity called scalar tangential component (F cos(θ), where θ is the angle between the force and the velocity). And then the most general definition of work can be formulated as follows: Area under the curve gives work done by F(x).

  8. Physical quantity - Wikipedia

    en.wikipedia.org/wiki/Physical_quantity

    A physical quantity (or simply quantity) [1] [a] is a property of a material or system that can be quantified by measurement. A physical quantity can be expressed as a value , which is the algebraic multiplication of a numerical value and a unit of measurement .

  9. Scalar field - Wikipedia

    en.wikipedia.org/wiki/Scalar_field

    The force is a vector field, which can be obtained as a factor of the gradient of the potential energy scalar field. Examples include: Examples include: Potential fields, such as the Newtonian gravitational potential , or the electric potential in electrostatics , are scalar fields which describe the more familiar forces.