Search results
Results from the WOW.Com Content Network
A scalar in physics and other areas of science is also a scalar in mathematics, as an element of a mathematical field used to define a vector space.For example, the magnitude (or length) of an electric field vector is calculated as the square root of its absolute square (the inner product of the electric field with itself); so, the inner product's result is an element of the mathematical field ...
The concept of force makes the everyday notion of pushing or pulling mathematically precise. Because the magnitude and direction of a force are both important, force is a vector quantity. The SI unit of force is the newton (N), and force is often represented by the symbol F. Force plays an important role in classical mechanics.
A field can be classified as a scalar field, a vector field, a spinor field or a tensor field according to whether the represented physical quantity is a scalar, a vector, a spinor, or a tensor, respectively. A field has a consistent tensorial character wherever it is defined: i.e. a field cannot be a scalar field somewhere and a vector field ...
scalar Electrical conductivity: σ: Measure of a material's ability to conduct an electric current S/m L −3 M −1 T 3 I 2: scalar Electric potential: φ: Energy required to move a unit charge through an electric field from a reference point volt (V = J/C) L 2 M T −3 I −1: extensive, scalar Electrical resistance: R: Electric potential per ...
In physics, forces (as vectorial quantities) are given as the derivative (gradient) of scalar quantities named potentials. In classical physics before Einstein, gravitation was given in the same way, as consequence of a gravitational force (vectorial), given through a scalar potential field, dependent of the mass of the particles.
This component of force can be described by the scalar quantity called scalar tangential component (F cos(θ), where θ is the angle between the force and the velocity). And then the most general definition of work can be formulated as follows: Area under the curve gives work done by F(x).
Pressure is a scalar quantity. It relates the vector area element (a vector normal to the surface) with the normal force acting on it. The pressure is the scalar proportionality constant that relates these two normal vectors: = =.
Others [5] [6] define weight as a scalar quantity, the magnitude of the gravitational force. Yet others [ 7 ] define it as the magnitude of the reaction force exerted on a body by mechanisms that counteract the effects of gravity: the weight is the quantity that is measured by, for example, a spring scale.