Search results
Results from the WOW.Com Content Network
Slicing of higher-dimensional arrays works similarly: A[-1, *] % The last row of A A[[1:5], [2:7]] % 2d array using rows 1-5 and columns 2-7 A[[5:1:-1], [2:7]] % Same as above except the rows are reversed Array indices can also be arrays of integers. For example, suppose that I = [0:9] is an array of 10 integers.
By default, a Pandas index is a series of integers ascending from 0, similar to the indices of Python arrays. However, indices can use any NumPy data type, including floating point, timestamps, or strings. [4]: 112 Pandas' syntax for mapping index values to relevant data is the same syntax Python uses to map dictionary keys to values.
Timsort is a hybrid, stable sorting algorithm, derived from merge sort and insertion sort, designed to perform well on many kinds of real-world data.It was implemented by Tim Peters in 2002 for use in the Python programming language.
One implementation can be described as arranging the data sequence in a two-dimensional array and then sorting the columns of the array using insertion sort. The worst-case time complexity of Shellsort is an open problem and depends on the gap sequence used, with known complexities ranging from O ( n 2 ) to O ( n 4/3 ) and Θ( n log 2 n ).
To use column-major order in a row-major environment, or vice versa, for whatever reason, one workaround is to assign non-conventional roles to the indexes (using the first index for the column and the second index for the row), and another is to bypass language syntax by explicitly computing positions in a one-dimensional array.
Bitonic mergesort is a parallel algorithm for sorting. It is also used as a construction method for building a sorting network.The algorithm was devised by Ken Batcher.The resulting sorting networks consist of ( ()) comparators and have a delay of ( ()), where is the number of items to be sorted. [1]
When the array contains only duplicates of a relatively small number of items, a constant-time perfect hash function can greatly speed up finding where to put an item 1, turning the sort from Θ(n 2) time to Θ(n + k) time, where k is the total number of hashes. The array ends up sorted in the order of the hashes, so choosing a hash function ...
Bucket sort can be seen as a generalization of counting sort; in fact, if each bucket has size 1 then bucket sort degenerates to counting sort. The variable bucket size of bucket sort allows it to use O(n) memory instead of O(M) memory, where M is the number of distinct values; in exchange, it gives up counting sort's O(n + M) worst-case behavior.