Search results
Results from the WOW.Com Content Network
In this case a point that is neither a pole nor a zero is viewed as a pole (or zero) of order 0. A meromorphic function may have infinitely many zeros and poles. This is the case for the gamma function (see the image in the infobox), which is meromorphic in the whole complex plane, and has a simple pole at every non-positive integer.
A pole-zero plot shows the location in the complex plane of the poles and zeros of the transfer function of a dynamic system, such as a controller, compensator, sensor, equalizer, filter, or communications channel. By convention, the poles of the system are indicated in the plot by an X while the zeros are indicated by a circle or O.
The s-plane poles and zeros of a 5th-order Chebyshev type II lowpass filter to be approximated as a discrete-time filter The z-plane poles and zeros of the discrete-time Chebyshev filter, as mapped into the z-plane using the matched Z-transform method with T = 1/10 second.
If the system function has zeros as well as poles, they can be mapped the same way, but the result is no longer an impulse invariance result: the discrete-time impulse response is not equal simply to samples of the continuous-time impulse response. This method is known as the matched Z-transform method, or pole–zero mapping.
This time, the numerator is zero at z K = 0, giving K zeros at z = 0. The denominator is equal to zero whenever z K = α. This has K solutions, equally spaced around a circle in the complex plane; these are the poles of the transfer function. This leads to a pole–zero plot like the ones shown below.
The simple contour C (black), the zeros of f (blue) and the poles of f (red). Here we have ′ () =. In complex analysis, the argument principle (or Cauchy's argument principle) is a theorem relating the difference between the number of zeros and poles of a meromorphic function to a contour integral of the function's logarithmic derivative.
The root locus plots the poles of the closed loop transfer function in the complex s-plane as a function of a gain parameter (see pole–zero plot). Evans also invented in 1948 an analog computer to compute root loci, called a "Spirule" (after "spiral" and "slide rule"); it found wide use before the advent of digital computers.
Intuitively, the minimum-phase part of a general causal system implements its amplitude response with minimal group delay, while its all-pass part corrects its phase response alone to correspond with the original system function. The analysis in terms of poles and zeros is exact only in the case of transfer functions which can be expressed as ...