Ads
related to: summability methods in mathseducation.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
In mathematical analysis, a summability method is an alternative formulation of convergence of a series which is divergent in the conventional sense. Subcategories This category has the following 2 subcategories, out of 2 total.
In 1890, Ernesto Cesàro stated a broader family of summation methods which have since been called (C, α) for non-negative integers α. The (C, 0) method is just ordinary summation, and (C, 1) is Cesàro summation as described above. The higher-order methods can be described as follows: given a series Σa n, define the quantities
In mathematics and theoretical physics, zeta function regularization is a type of regularization or summability method that assigns finite values to divergent sums or products, and in particular can be used to define determinants and traces of some self-adjoint operators.
A summability method or summation method is a partial function from the set of series to values. ... "Riesz summation method", Encyclopedia of Mathematics, ...
For any summation method L, its Abelian theorem is the result that if c = (c n) is a convergent sequence, with limit C, then L(c) = C. [clarification needed]An example is given by the Cesàro method, in which L is defined as the limit of the arithmetic means of the first N terms of c, as N tends to infinity.
In mathematics, the Silverman–Toeplitz theorem, first proved by Otto Toeplitz, is a result in series summability theory characterizing matrix summability methods that are regular. A regular matrix summability method is a linear sequence transformation that preserves the limits of convergent sequences. [1]
Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.
In mathematics, summation by parts transforms the summation of products of sequences into other summations, often simplifying the computation or (especially) estimation of certain types of sums. It is also called Abel's lemma or Abel transformation , named after Niels Henrik Abel who introduced it in 1826.
Ads
related to: summability methods in mathseducation.com has been visited by 100K+ users in the past month