Search results
Results from the WOW.Com Content Network
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
With a uniform circular motion, the only force acting upon an object traveling in a circle is the centripetal force. In a non-uniform circular motion, there are additional forces acting on the object due to a non-zero tangential acceleration. Although there are additional forces acting upon the object, the sum of all the forces acting on the ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The green line shows the slope of the velocity-time graph at the particular point where the two lines touch. Its slope is the acceleration at that point. In mechanics, the derivative of the position vs. time graph of an object is equal to the velocity of the object.
Here Newton finds the centripetal force to produce motion in this configuration would be inversely proportional to the square of the radius vector. (Translation: 'Therefore, the centripetal force is reciprocally as L X SP², that is, (reciprocally) in the doubled ratio [i.e., square] of the distance ... .')
the kinetic energy of the system is equal to the absolute value of the total energy; the potential energy of the system is equal to twice the total energy; The escape velocity from any distance is √ 2 times the speed in a circular orbit at that distance: the kinetic energy is twice as much, hence the total energy is zero. [citation needed]
The velocity of a particle moving on a curved path as a function of time can be written as: = () = (), with v(t) equal to the speed of travel along the path, and = (), a unit vector tangent to the path pointing in the direction of motion at the chosen moment in time.
Internal forces between the particles that make up a body do not contribute to changing the momentum of the body as there is an equal and opposite force resulting in no net effect. [3] The linear momentum of a rigid body is the product of the mass of the body and the velocity of its center of mass v cm. [1] [4] [5]