Search results
Results from the WOW.Com Content Network
An inductive argument is said to be strong or weak. If the premises of an inductive argument are assumed true, is it probable the conclusion is also true? If yes, the argument is strong. If no, it is weak. A strong argument is said to be cogent if it has all true premises. Otherwise, the argument is uncogent.
This mathematical logic -related article is a stub. You can help Wikipedia by expanding it.
This support comes in degrees: strong arguments make the conclusion very likely, as is the case for well-researched issues in the empirical sciences. [ 1 ] [ 16 ] Some theorists give a very wide definition of logical reasoning that includes its role as a cognitive skill responsible for high-quality thinking.
Semantic completeness is the converse of soundness for formal systems. A formal system is complete with respect to tautologousness or "semantically complete" when all its tautologies are theorems, whereas a formal system is "sound" when all theorems are tautologies (that is, they are semantically valid formulas: formulas that are true under every interpretation of the language of the system ...
The American Invitational Mathematics Examination (AIME) is a selective and prestigious 15-question 3-hour test given since 1983 to those who rank in the top 5% on the AMC 12 high school mathematics examination (formerly known as the AHSME), and starting in 2010, those who rank in the top 2.5% on the AMC 10. Two different versions of the test ...
Finally, the adjective strong or the adverb strongly may be added to a mathematical notion to indicate a related stronger notion; for example, a strong antichain is an antichain satisfying certain additional conditions, and likewise a strongly regular graph is a regular graph meeting stronger conditions. When used in this way, the stronger ...
Classical logic is the standard logic of mathematics. Many mathematical theorems rely on classical rules of inference such as disjunctive syllogism and the double negation elimination. The adjective "classical" in logic is not related to the use of the adjective "classical" in physics, which has another meaning.
Weak form and strong form may refer to: Weaker and stronger versions of a hypothesis, theorem or physical law; Weak formulations and strong formulations of differential equations in mathematics; Differing pronunciations of words depending on emphasis; see Weak and strong forms in English; Weak and strong pronouns