Search results
Results from the WOW.Com Content Network
The first part of the book concludes with chapter 4, on the history of prime numbers and primality testing, including the prime number theorem (in a weakened form), applications of prime numbers in cryptography, and the widely used Miller–Rabin primality test, which runs in randomized polynomial time.
Some of the proofs of Fermat's little theorem given below depend on two simplifications.. The first is that we may assume that a is in the range 0 ≤ a ≤ p − 1.This is a simple consequence of the laws of modular arithmetic; we are simply saying that we may first reduce a modulo p.
Fermat's little theorem states that if p is prime and a is coprime to p, then a p−1 − 1 is divisible by p. For an integer a > 1, if a composite integer x divides a x−1 − 1, then x is called a Fermat pseudoprime to base a. It follows that if x is a Fermat pseudoprime to base a, then x is coprime to a. Some sources use variations of this ...
It is not a prime, since it equals 11·31, but it satisfies Fermat's little theorem: 2 340 ≡ 1 (mod 341) and thus passes the Fermat primality test for the base 2. Pseudoprimes to base 2 are sometimes called Sarrus numbers , after P. F. Sarrus who discovered that 341 has this property, Poulet numbers , after P. Poulet who made a table of such ...
Sophie Germain primes are named after French mathematician Sophie Germain, who used them in her investigations of Fermat's Last Theorem. [1] One attempt by Germain to prove Fermat’s Last Theorem was to let p be a prime number of the form 8k + 7 and to let n = p – 1. In this case, + = is unsolvable. Germain’s proof, however, remained ...
If a is not divisible by p, that is, if a is coprime to p, then Fermat's little theorem is equivalent to the statement that a p − 1 − 1 is an integer multiple of p, or in symbols: [1] [2] (). For example, if a = 2 and p = 7 , then 2 6 = 64 , and 64 − 1 = 63 = 7 × 9 is a multiple of 7 .
Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b.
Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.