Search results
Results from the WOW.Com Content Network
For nuclear-bomb designers, the term was a convenient name for the short interval, rounded to 10 nanoseconds, which was frequently seen in their measurements and calculations: The typical time required for one step in a chain reaction (i.e. the typical time for each neutron to cause a fission event, which releases more neutrons) is of the order of 1 shake, and a chain reaction is typically ...
A schematic nuclear fission chain reaction. 1. A uranium-235 atom absorbs a neutron and fissions into two new atoms (fission fragments), releasing three new neutrons and some binding energy. 2. One of those neutrons is absorbed by an atom of uranium-238 and does not continue the reaction. Another neutron is simply lost and does not collide with ...
The mere fact that an assembly is supercritical does not guarantee that it contains any free neutrons at all. At least one neutron is required to "strike" a chain reaction, and if the spontaneous fission rate is sufficiently low it may take a long time (in 235 U reactors, as long as many minutes) before a chance neutron encounter starts a chain reaction even if the reactor is supercritical.
In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformation of at least one nuclide to another.
In a normal thermal reactor, tin-121m has a very low fission product yield; thus, this isotope is not a significant contributor to nuclear waste. Fast fission or fission of some heavier actinides will produce 121m Sn at higher yields. For example, its yield from U-235 is 0.0007% per thermal fission and 0.002% per fast fission. [10]
Each nuclear fission produces several neutrons that can be absorbed, escape from the reactor, or go on to cause more fissions in a nuclear chain reaction. When an average of one neutron from each fission goes on to cause another fission, the reactor is "critical", and the chain reaction proceeds at a constant power level. Adding reactivity at ...
The neutrons needed for sustaining the fission process would be provided by a particle accelerator producing neutrons by spallation or photo-neutron production. These neutrons activate the thorium, enabling fission without needing to make the reactor critical. One benefit of such reactors is the relatively short half-lives of their waste products.
An assembly is critical if each fission event causes, on average, exactly one additional such event in a continual chain. Such a chain is a self-sustaining fission chain reaction. When a uranium-235 (U-235) atom undergoes nuclear fission, it typically releases between one and seven neutrons (with an average of 2.4).