Search results
Results from the WOW.Com Content Network
Ptolemy's Theorem yields as a corollary a pretty theorem [2] regarding an equilateral triangle inscribed in a circle. Given An equilateral triangle inscribed on a circle and a point on the circle. The distance from the point to the most distant vertex of the triangle is the sum of the distances from the point to the two nearer vertices.
He used Ptolemy's theorem on quadrilaterals inscribed in a circle to derive formulas for the chord of a half-arc, the chord of the sum of two arcs, and the chord of a difference of two arcs. The theorem states that for a quadrilateral inscribed in a circle , the product of the lengths of the diagonals equals the sum of the products of the two ...
Ptolemy's theorem expresses the product of the lengths of the two diagonals e and f of a cyclic quadrilateral as equal to the sum of the products of opposite sides: [9]: p.25 [2] e f = a c + b d , {\displaystyle \displaystyle ef=ac+bd,}
For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem: ¯ ¯ + ¯ ¯ = ¯ ¯. In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may ...
Trigonometry – branch of mathematics that studies the relationships between the sides and the angles in triangles. ... Ptolemy's theorem; Pythagorean theorem;
A special case of Ptolemy's theorem appeared as proposition 93 in Euclid's Data. Ptolemy's theorem leads to the equivalent of the four sum-and-difference formulas for sine and cosine that are today known as Ptolemy's formulas, although Ptolemy himself used chords instead of sine and cosine. [21]
In mathematics, Casey's theorem, also known as the generalized Ptolemy's theorem, is a theorem in Euclidean geometry named after the Irish mathematician John Casey.
Great Commentary on Ptolemy's Handy Tables. This work partially survives. It originally consisted of 5 books, of which books 1–3 and the beginning of book 4 are extant. It describes how to use Ptolemy's tables and gives details on the reasoning behind the calculations. [1] Little Commentary on Ptolemy's Handy Tables. This work survives complete.