Search results
Results from the WOW.Com Content Network
Many plants lose much of the remaining energy on growing roots. Most crop plants store ~0.25% to 0.5% of the sunlight in the product (corn kernels, potato starch, etc.). Photosynthesis increases linearly with light intensity at low intensity, but at higher intensity this is no longer the case (see Photosynthesis-irradiance curve). Above about ...
The latter occurs not only in plants but also in animals when the carbon and energy from plants is passed through a food chain. The fixation or reduction of carbon dioxide is a process in which carbon dioxide combines with a five-carbon sugar , ribulose 1,5-bisphosphate , to yield two molecules of a three-carbon compound, glycerate 3-phosphate ...
To do this, it must release the absorbed energy. This can happen in various ways. The extra energy can be converted into molecular motion and lost as heat, or re-emitted by the electron as light (fluorescence). The energy, but not the electron itself, may be passed onto another molecule; this is called resonance energy transfer.
The Calvin cycle uses the chemical energy of ATP and the reducing power of NADPH from the light-dependent reactions to produce sugars for the plant to use. These substrates are used in a series of reduction-oxidation ( redox ) reactions to produce sugars in a step-wise process; there is no direct reaction that converts several molecules of CO 2 ...
For premium support please call: 800-290-4726 more ways to reach us
All organisms produce a phosphate compound, ATP, which is the universal energy currency of life. In photophosphorylation, light energy is used to pump protons across a biological membrane, mediated by flow of electrons through an electron transport chain. This stores energy in a proton gradient.
Plants synthesize carbohydrates from carbon dioxide and water through photosynthesis, allowing them to store energy absorbed from sunlight internally. [2] When animals and fungi consume plants, they use cellular respiration to break down these stored carbohydrates to make energy available to cells. [ 2 ]
Photoautotrophs are organisms that can utilize light energy from sunlight and elements (such as carbon) from inorganic compounds to produce organic materials needed to sustain their own metabolism (i.e. autotrophy). Such biological activities are known as photosynthesis, and examples of such organisms include plants, algae and cyanobacteria.