Search results
Results from the WOW.Com Content Network
In the case of even parity, for a given set of bits, the bits whose value is 1 are counted. If that count is odd, the parity bit value is set to 1, making the total count of occurrences of 1s in the whole set (including the parity bit) an even number. If the count of 1s in a given set of bits is already even, the parity bit's value is 0.
A multidimensional parity-check code (MDPC) is a type of error-correcting code that generalizes two-dimensional parity checks to higher dimensions. It was developed as an extension of simple parity check methods used in magnetic recording systems and radiation-hardened memory designs .
Convolutional codes are processed on a bit-by-bit basis. They are particularly suitable for implementation in hardware, and the Viterbi decoder allows optimal decoding. Block codes are processed on a block-by-block basis. Early examples of block codes are repetition codes, Hamming codes and multidimensional parity-check codes.
For example, some 16-bit CRC schemes swap the bytes of the check value. Omission of the high-order bit of the divisor polynomial: Since the high-order bit is always 1, and since an n-bit CRC must be defined by an (n + 1)-bit divisor which overflows an n-bit register, some writers assume that it is unnecessary to mention the divisor's high-order ...
The parity bit may be used within another constituent code. In an example using the DVB-S2 rate 2/3 code the encoded block size is 64800 symbols (N=64800) with 43200 data bits (K=43200) and 21600 parity bits (M=21600). Each constituent code (check node) encodes 16 data bits except for the first parity bit which encodes 8 data bits.
Check digits and parity bits are special cases of checksums, appropriate for small blocks of data (such as Social Security numbers, bank account numbers, computer words, single bytes, etc.). Some error-correcting codes are based on special checksums which not only detect common errors but also allow the original data to be recovered in certain ...
Logic parity RAM recalculates an always-valid parity bit each time a byte is read from memory, instead of storing the parity bit when the memory is written to; the calculated parity bit, which will not reveal if the data has been corrupted (hence the name "fake parity"), is presented to the parity-checking logic.
The data must be divided into transmission blocks, to which the additional check data is added. The term usually applies to a single parity bit per bit stream, calculated independently of all the other bit streams . [1] [2] This "extra" LRC word at the end of a block of data is very similar to checksum and cyclic redundancy check (CRC).