Search results
Results from the WOW.Com Content Network
A double pendulum consists of two pendulums attached end to end.. In physics and mathematics, in the area of dynamical systems, a double pendulum, also known as a chaotic pendulum, is a pendulum with another pendulum attached to its end, forming a simple physical system that exhibits rich dynamic behavior with a strong sensitivity to initial conditions. [1]
A double pendulum. The benefits of generalized coordinates become apparent with the analysis of a double pendulum. For the two masses m i (i = 1, 2), let r i = (x i, y i), i = 1, 2 define their two trajectories. These vectors satisfy the two constraint equations,
A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position.
Pendulum. Inverted pendulum; Double pendulum; Foucault pendulum; Spherical pendulum; Kinematics; Equation of motion; Dynamics (mechanics) Classical mechanics; Isolated physical system. Lagrangian mechanics; Hamiltonian mechanics; Routhian mechanics; Hamilton-Jacobi theory; Appell's equation of motion; Udwadia–Kalaba equation; Celestial ...
Systems science portal; Dynamical systems deals with the study of the solutions to the equations of motion of systems that are primarily mechanical in nature; although this includes both planetary orbits as well as the behaviour of electronic circuits and the solutions to partial differential equations that arise in biology.
Such flows commonly occur in classical mechanics, which is the study in physics of finite-dimensional moving machinery, e.g. the double pendulum and so-forth. Classical mechanics is constructed on symplectic manifolds.
Discover the latest breaking news in the U.S. and around the world — politics, weather, entertainment, lifestyle, finance, sports and much more.
A quantum-mechanical analogue of the gravitational three-body problem in classical mechanics is the helium atom, in which a helium nucleus and two electrons interact according to the inverse-square Coulomb interaction. Like the gravitational three-body problem, the helium atom cannot be solved exactly.