enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Double pendulum - Wikipedia

    en.wikipedia.org/wiki/Double_pendulum

    A double pendulum consists of two pendulums attached end to end.. In physics and mathematics, in the area of dynamical systems, a double pendulum, also known as a chaotic pendulum, is a pendulum with another pendulum attached to its end, forming a simple physical system that exhibits rich dynamic behavior with a strong sensitivity to initial conditions. [1]

  3. List of chaotic maps - Wikipedia

    en.wikipedia.org/wiki/List_of_chaotic_maps

    3: 3: Not topologically conjugate to the Lorenz attractor. Chen-Celikovsky system [10] continuous: real: 3 "Generalized Lorenz canonical form of chaotic systems" Chen-LU system [11] continuous: real: 3: 3: Interpolates between Lorenz-like and Chen-like behavior. Chen-Lee system: continuous: real: 3: Chossat-Golubitsky symmetry map: Chua circuit ...

  4. Chaos theory - Wikipedia

    en.wikipedia.org/wiki/Chaos_theory

    A plot of the Lorenz attractor for values r = 28, σ = 10, b = ⁠ 8 / 3 ⁠ An animation of a double-rod pendulum at an intermediate energy showing chaotic behavior. Starting the pendulum from a slightly different initial condition would result in a vastly different trajectory. The double-rod pendulum is one of the simplest dynamical systems ...

  5. Generalized coordinates - Wikipedia

    en.wikipedia.org/wiki/Generalized_coordinates

    An example of a generalized coordinate would be to describe the position of a pendulum using the angle of the pendulum relative to vertical, rather than by the x and y position of the pendulum. Although there may be many possible choices for generalized coordinates for a physical system, they are generally selected to simplify calculations ...

  6. Quantum harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Quantum_harmonic_oscillator

    The degeneracy can be calculated relatively easily. As an example, consider the 3-dimensional case: Define n = n 1 + n 2 + n 3. All states with the same n will have the same energy. For a given n, we choose a particular n 1. Then n 2 + n 3 = n − n 1. There are n − n 1 + 1 possible pairs {n 2, n 3}.

  7. Complex harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Complex_harmonic_motion

    Moreover, a double pendulum may exert motion without the restriction of only a two-dimensional (usually vertical) plane. In other words, the complex pendulum can move to anywhere within the sphere, which has the radius of the total length of the two pendulums. However, for a small angle, the double pendulum can act similarly to the simple ...

  8. Swinging Atwood's machine - Wikipedia

    en.wikipedia.org/wiki/Swinging_Atwood's_Machine

    Specifically, it comprises two masses (the pendulum, mass m and counterweight, mass M) connected by an inextensible, massless string suspended on two frictionless pulleys of zero radius such that the pendulum can swing freely around its pulley without colliding with the counterweight. [1]

  9. Rössler attractor - Wikipedia

    en.wikipedia.org/wiki/Rössler_attractor

    The Rössler attractor (/ ˈ r ɒ s l ər /) is the attractor for the Rössler system, a system of three non-linear ordinary differential equations originally studied by Otto Rössler in the 1970s. [1] [2] These differential equations define a continuous-time dynamical system that exhibits chaotic dynamics associated with the fractal properties ...