Search results
Results from the WOW.Com Content Network
It is a measure of the cohesive forces that bind ionic solids. The size of the lattice energy is connected to many other physical properties including solubility, hardness, and volatility. Since it generally cannot be measured directly, the lattice energy is usually deduced from experimental data via the Born–Haber cycle. [1]
The Born–Landé equation is a means of calculating the lattice energy of a crystalline ionic compound.In 1918 [1] Max Born and Alfred Landé proposed that the lattice energy could be derived from the electrostatic potential of the ionic lattice and a repulsive potential energy term.
The surface energy of a liquid may be measured by stretching a liquid membrane (which increases the surface area and hence the surface energy). In that case, in order to increase the surface area of a mass of liquid by an amount, δA, a quantity of work, γ δA, is needed (where γ is the surface energy density of the liquid).
Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ [1]. A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal.
If the SAD is taken from one a or a few single crystals, the diffractogram depicts a regular pattern of bright spots. Since the diffraction pattern can be seen as a two-dimensional projection of reciprocal crystal lattice, the pattern can be used to measure lattice constants, specifically the distances and angles between crystallographic planes ...
The calculated lattice energy gives a good estimation for the Born–Landé equation; the real value differs in most cases by less than 5%. Furthermore, one is able to determine the ionic radii (or more properly, the thermochemical radius) using the Kapustinskii equation when the lattice energy is known.
where E V is the maximum energy of the valence band. Practically, this effective mass tends to vary greatly between absolute zero and room temperature in many materials (e.g., a factor of two in silicon), as there are multiple valence bands with distinct and significantly non-parabolic character, all peaking near the same energy. [8]
The computer-generated reciprocal lattice of a fictional monoclinic 3D crystal. A two-dimensional crystal and its reciprocal lattice. The reciprocal lattice is a term associated with solids with translational symmetry, and plays a major role in many areas such as X-ray and electron diffraction as well as the energies of electrons in a solid.