Search results
Results from the WOW.Com Content Network
The forces acting on a body add as vectors, and so the total force on a body depends upon both the magnitudes and the directions of the individual forces. When the net force on a body is equal to zero, then by Newton's second law, the body does not accelerate, and it is said to be in mechanical equilibrium.
The basic idea that matter is made up of tiny indivisible particles is an old idea that appeared in many ancient cultures. The word atom is derived from the ancient Greek word atomos, [a] which means "uncuttable". But this ancient idea was based in philosophical reasoning rather than scientific reasoning.
That force is the net force. [1] When forces act upon an object, they change its acceleration. The net force is the combined effect of all the forces on the object's acceleration, as described by Newton's second law of motion. When the net force is applied at a specific point on an object, the associated torque can be calculated.
Each circle represents the position of one atom. The kinetic energy of the atom approaching from the top is redistributed among the other atoms, so instead of bouncing off it remains attached due to attractive forces between the atoms. Molecular dynamics simulations are often used to study biophysical systems.
This allowed a description of the motions of light and mass that was consistent with all available observations. In general relativity, the gravitational force is a fictitious force resulting from the curvature of spacetime, because the gravitational acceleration of a body in free fall is due to its world line being a geodesic of spacetime.
A macroscopic body that is stationary (i.e. a reference frame has been chosen to correspond to the body's center of momentum) may have various kinds of internal energy at the molecular or atomic level, which may be regarded as kinetic energy, due to molecular translation, rotation, and vibration, electron translation and spin, and nuclear spin ...
In such a situation, a force is applied in the direction of motion while the kinetic friction force exactly opposes the applied force. This results in zero net force, but since the object started with a non-zero velocity, it continues to move with a non-zero velocity. Aristotle misinterpreted this motion as being caused by the applied force.
Part of force field of ethane for the C-C stretching bond. In the context of chemistry, molecular physics, physical chemistry, and molecular modelling, a force field is a computational model that is used to describe the forces between atoms (or collections of atoms) within molecules or between molecules as well as in crystals.