Search results
Results from the WOW.Com Content Network
Given a function that accepts an array, a range query (,) on an array = [,..,] takes two indices and and returns the result of when applied to the subarray [, …,].For example, for a function that returns the sum of all values in an array, the range query (,) returns the sum of all values in the range [,].
In this case, the array from which samples are taken is [2, 3, -1, -20, 5, 10]. In computer science, the maximum sum subarray problem, also known as the maximum segment sum problem, is the task of finding a contiguous subarray with the largest sum, within a given one-dimensional array A[1...n] of numbers.
When an array is numerically indexed, its range is the upper and lower bound of the array. Depending on the environment, a warning, a fatal exception , or unpredictable behavior will occur if the program attempts to access an array element that is outside the range.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.
Here input is the input array to be sorted, key returns the numeric key of each item in the input array, count is an auxiliary array used first to store the numbers of items with each key, and then (after the second loop) to store the positions where items with each key should be placed, k is the maximum value of the non-negative key values and ...
Binary search Visualization of the binary search algorithm where 7 is the target value Class Search algorithm Data structure Array Worst-case performance O (log n) Best-case performance O (1) Average performance O (log n) Worst-case space complexity O (1) Optimal Yes In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search ...
The C++ Standard Library also supports for_each, [10] that applies each element to a function, which can be any predefined function or a lambda expression. While range-based for is only from the start to the end, the range or direction can be changed by altering the first two parameters.
The longest increasing subsequence problem is closely related to the longest common subsequence problem, which has a quadratic time dynamic programming solution: the longest increasing subsequence of a sequence is the longest common subsequence of and , where is the result of sorting.