enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generative adversarial network - Wikipedia

    en.wikipedia.org/wiki/Generative_adversarial_network

    Another inspiration for GANs was noise-contrastive estimation, [113] which uses the same loss function as GANs and which Goodfellow studied during his PhD in 2010–2014. Adversarial machine learning has other uses besides generative modeling and can be applied to models other than neural networks.

  3. Wasserstein GAN - Wikipedia

    en.wikipedia.org/wiki/Wasserstein_GAN

    The Wasserstein Generative Adversarial Network (WGAN) is a variant of generative adversarial network (GAN) proposed in 2017 that aims to "improve the stability of learning, get rid of problems like mode collapse, and provide meaningful learning curves useful for debugging and hyperparameter searches".

  4. Keras - Wikipedia

    en.wikipedia.org/wiki/Keras

    Keras was first independent software, then integrated into the TensorFlow library, and later supporting more. "Keras 3 is a full rewrite of Keras [and can be used] as a low-level cross-framework language to develop custom components such as layers, models, or metrics that can be used in native workflows in JAX, TensorFlow, or PyTorch — with ...

  5. Fréchet inception distance - Wikipedia

    en.wikipedia.org/wiki/Fréchet_inception_distance

    The Fréchet inception distance (FID) is a metric used to assess the quality of images created by a generative model, like a generative adversarial network (GAN) [1] or a diffusion model.

  6. TensorFlow - Wikipedia

    en.wikipedia.org/wiki/TensorFlow

    For example, TensorFlow Recommenders and TensorFlow Graphics are libraries for their respective functionalities in recommendation systems and graphics, TensorFlow Federated provides a framework for decentralized data, and TensorFlow Cloud allows users to directly interact with Google Cloud to integrate their local code to Google Cloud. [68]

  7. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    We can then implement a deep network with TensorFlow or Keras. Hyperparameters must also be defined as part of the design (they are not learned), governing matters such as how many neurons are in each layer, learning rate, step, stride, depth, receptive field and padding (for CNNs), etc. [167]

  8. Google Brain - Wikipedia

    en.wikipedia.org/wiki/Google_Brain

    TensorFlow is an open source software library powered by Google Brain that allows anyone to utilize machine learning by providing the tools to train one's own neural network. [2] The tool has been used to develop software using deep learning models that farmers use to reduce the amount of manual labor required to sort their yield, by training ...

  9. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent (often abbreviated SGD) is an iterative method for optimizing an objective function with suitable smoothness properties (e.g. differentiable or subdifferentiable).