Search results
Results from the WOW.Com Content Network
The reaction C (s) diamond → C (s) graphite has a negative change in Gibbs free energy and is therefore thermodynamically favorable at 25 °C and 1 atm. However, the reaction is too slow to be observed, because of its very high activation energy.
The standard Gibbs free energy of formation (G f °) of a compound is the change of Gibbs free energy that accompanies the formation of 1 mole of a substance in its standard state from its constituent elements in their standard states (the most stable form of the element at 1 bar of pressure and the specified temperature, usually 298.15 K or 25 °C).
Hence, the main functional application of Gibbs energy from a thermodynamic database is its change in value during the formation of a compound from the standard-state elements, or for any standard chemical reaction (ΔG° form or ΔG° rx). The SI units of Gibbs energy are the same as for enthalpy (J/mol).
It describes how the Gibbs free energy, which was presented originally by Josiah Willard Gibbs, varies with temperature. [1] It was derived by Helmholtz first, and Gibbs derived it only 6 years later. [2] The attribution to Gibbs goes back to Wilhelm Ostwald, who first translated Gibbs' monograph into German and promoted it in Europe. [3] [4]
When both temperature and pressure are held constant, and the number of particles is expressed in moles, the chemical potential is the partial molar Gibbs free energy. [1] [2] At chemical equilibrium or in phase equilibrium, the total sum of the product of chemical potentials and stoichiometric coefficients is zero, as the free energy is at a ...
Several free energy functions may be formulated based on system criteria. Free energy functions are Legendre transforms of the internal energy. The Gibbs free energy is given by G = H − TS, where H is the enthalpy, T is the absolute temperature, and S is the entropy. H = U + pV, where U is the internal energy, p is the pressure, and V is the ...
For example, the Gibbs free energy change is used when considering processes that occur under constant pressure and temperature conditions, whereas the Helmholtz free energy change is used when considering processes that occur under constant volume and temperature conditions. The value and even the sign of both free energy changes can depend ...
Free energy relationships establish the extent at which bond formation and breakage happen in the transition state of a reaction, and in combination with kinetic isotope experiments a reaction mechanism can be determined. Free energy relationships are often used to calculate equilibrium constants since they are experimentally difficult to ...