Search results
Results from the WOW.Com Content Network
Optical interconnects may provide a way forward, and silicon photonics may prove particularly useful, once integrated on the standard silicon chips. [ 6 ] [ 35 ] [ 36 ] In 2006, Intel Senior Vice President - and future CEO - Pat Gelsinger stated that, "Today, optics is a niche technology.
Silicon dioxide is a relatively inert material (hence its widespread occurrence as a mineral). Silica is often used as inert containers for chemical reactions. At high temperatures, it is converted to silicon by reduction with carbon. Fluorine reacts with silicon dioxide to form SiF 4 and O 2 whereas the other halogen gases (Cl 2, Br 2, I 2 ...
Thickness of the Ge 40 Se 60 /Si film on the silicon substrate as 34.5 nm, Thickness of the Ge 40 Se 60 /Si film on the oxidized silicon substrate as 33.6 nm, Thickness of SiO 2 (with n and k spectra of SiO 2 held fixed), and; n and k spectra, in 190–1000 nm range, of Ge 40 Se 60 /Si.
An optical coating is one or more thin layers of material deposited on an optical ... or silicon dioxide (n=1.49). ... and a low-mass spacer such as silicon, ...
Photolithography (also known as optical lithography) is a process used in the manufacturing of integrated circuits. It involves using light to transfer a pattern onto a substrate, typically a silicon wafer. The process begins with a photosensitive material, called a photoresist, being applied to the substrate.
Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.
Silicon dioxide (SiO 2) has been used as a gate oxide material for decades. As metal–oxide–semiconductor field-effect transistors (MOSFETs) have decreased in size, the thickness of the silicon dioxide gate dielectric has steadily decreased to increase the gate capacitance (per unit area) and thereby drive current (per device width), raising device performance.
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).