Search results
Results from the WOW.Com Content Network
N-Bromosuccinimide or NBS is a chemical reagent used in radical substitution, electrophilic addition, and electrophilic substitution reactions in organic chemistry. NBS can be a convenient source of Br • , the bromine radical.
The Wohl–Ziegler reaction [1] [2] is a chemical reaction that involves the allylic or benzylic bromination of hydrocarbons using an N-bromosuccinimide and a radical initiator. [3] Best yields are achieved with N-bromosuccinimide in carbon tetrachloride solvent. Several reviews have been published. [4] [5]
Structure of N-bromosuccinimide, a common brominating reagent in organic chemistry. Like the other carbon–halogen bonds, the C–Br bond is a common functional group that forms part of core organic chemistry. Formally, compounds with this functional group may be considered organic derivatives of the bromide anion.
Reagents are "substances or compounds that are added to a system in order to bring about a chemical reaction or are added to see if a reaction occurs." [1] Some reagents are just a single element. However, most processes require reagents made of chemical compounds. Some of the most common ones used widely for specific reactive functions are ...
N-Iodosuccinimide (NIS) is a reagent used in organic chemistry for the iodination of alkenes and as a mild oxidant. [ 2 ] NIS is the iodine analog of N -chlorosuccinimide (NCS) and N -bromosuccinimide (NBS) which are used for similar applications.
Structure of N-bromosuccinimide, a common brominating reagent in organic chemistry. Like the other carbon–halogen bonds, the C–Br bond is a common functional group that forms part of core organic chemistry. Formally, compounds with this functional group may be considered organic derivatives of the bromide anion.
Succinimide is an organic compound with the formula (CH 2) 2 (CO) 2 NH. This white solid is used in a variety of organic syntheses, as well as in some industrial silver plating processes. The compound is classified as a cyclic imide. It may be prepared by thermal decomposition of ammonium succinate. [4]
Several reagents can be substituted for bromine. Sodium hypochlorite, [4] lead tetraacetate, [5] N-bromosuccinimide, and (bis(trifluoroacetoxy)iodo)benzene [6] can affect a Hofmann rearrangement. The intermediate isocyanate can be trapped with various nucleophiles to form stable carbamates or other products rather than undergoing decarboxylation.