Search results
Results from the WOW.Com Content Network
In mechanics, the flexural modulus or bending modulus [1] is an intensive property that is computed as the ratio of stress to strain in flexural deformation, or the tendency for a material to resist bending.
The flexural strength is stress at failure in bending. It is equal to or slightly larger than the failure stress in tension. Flexural strength, also known as modulus of rupture, or bend strength, or transverse rupture strength is a material property, defined as the stress in a material just before it yields in a flexure test. [1]
For a body with multiple DOF, to calculate a particular direct-related stiffness (the diagonal terms), the corresponding DOF is left free while the remaining should be constrained. Under such a condition, the above equation can obtain the direct-related stiffness for the degree of unconstrained freedom.
1940s flexural test machinery working on a sample of concrete Test fixture on universal testing machine for three-point flex test. The three-point bending flexural test provides values for the modulus of elasticity in bending, flexural stress, flexural strain and the flexural stress–strain response of the material.
Although the moment () and displacement generally result from external loads and may vary along the length of the beam or rod, the flexural rigidity (defined as ) is a property of the beam itself and is generally constant for prismatic members.
The elastic section modulus is used to calculate a cross-section's resistance to bending within the elastic range, where stress and strain are proportional. The plastic section modulus is used to calculate a cross-section's capacity to resist bending after yielding has occurred across the entire section. It is used for determining the plastic ...
AOL Mail welcomes Verizon customers to our safe and delightful email experience!
Young's modulus of a material can be used to calculate the force it exerts under specific strain. F = E A Δ L L 0 {\displaystyle F={\frac {EA\,\Delta L}{L_{0}}}} where F {\displaystyle F} is the force exerted by the material when contracted or stretched by Δ L {\displaystyle \Delta L} .