enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Denaturation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Denaturation_(biochemistry)

    Note 2: Denaturation can occur when proteins and nucleic acids are subjected to elevated temperature or to extremes of pH, or to nonphysiological concentrations of salt, organic solvents, urea, or other chemical agents. Note 3: An enzyme loses its ability to alter or speed up a chemical reaction when it is denaturized. [2]

  3. Pepsin - Wikipedia

    en.wikipedia.org/wiki/Pepsin

    Pepsin is inactive at pH 6.5 and above, however pepsin is not fully denatured or irreversibly inactivated until pH 8.0. [11] [15] Therefore, pepsin in solutions of up to pH 8.0 can be reactivated upon re-acidification. The stability of pepsin at high pH has significant implications on disease attributed to laryngopharyngeal reflux. Pepsin ...

  4. Active site - Wikipedia

    en.wikipedia.org/wiki/Active_site

    To maintain this defined three-dimensional structure, proteins rely on various types of interactions between their amino acid residues. If these interactions are interfered with, for example by extreme pH values, high temperature or high ion concentrations, this will cause the enzyme to denature and lose its catalytic activity. [citation needed]

  5. Proteinase K - Wikipedia

    en.wikipedia.org/wiki/Proteinase_K

    Proteinase K is also stable over a wide pH range (4–12), with a pH optimum of pH 8.0. [5] An elevation of the reaction temperature from 37 °C to 50–60 °C may increase the activity several times, like the addition of 0.5–1% sodium dodecyl sulfate (SDS) or Guanidinium chloride (3 M), Guanidinium thiocyanate (1 M) and urea (4 M) [ disputed ...

  6. Protease - Wikipedia

    en.wikipedia.org/wiki/Protease

    Ribbon diagram of a protease (TEV protease) complexed with its peptide substrate in black with catalytic residues in red.(. A protease (also called a peptidase, proteinase, or proteolytic enzyme) [1] is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. [2]

  7. RuBisCO - Wikipedia

    en.wikipedia.org/wiki/RuBisCo

    The pH and the concentration of magnesium ions in the fluid compartment (in plants, the stroma of the chloroplast) increases in the light. The role of changing pH and magnesium ion levels in the regulation of RuBisCO enzyme activity is discussed below. Once the carbamate is formed, His335 finalizes the activation by returning to its initial ...

  8. Alkaliphile - Wikipedia

    en.wikipedia.org/wiki/Alkaliphile

    Microbial growth in alkaline conditions presents several complications to normal biochemical activity and reproduction, as high pH is detrimental to normal cellular processes. For example, alkalinity can lead to denaturation of DNA, instability of the plasma membrane and inactivation of cytosolic enzymes , as well as other unfavorable ...

  9. Catechol oxidase - Wikipedia

    en.wikipedia.org/wiki/Catechol_oxidase

    While a number of inhibitory strategies exist such as high temperature treatments(70-90 °C) to eliminate catechol oxidase catalytic activity, [6] a popular strategy is decreasing the pH with citric acid. Catechol oxidase is more catalytically active in the pH 4-8 range due to coordination of the histidine residues to the catalytic copper centers.