Search results
Results from the WOW.Com Content Network
The CGS unit of pressure is the barye (Ba), equal to 1 dyn·cm −2, or 0.1 Pa. Pressure is sometimes expressed in grams-force or kilograms-force per square centimetre ("g/cm 2" or "kg/cm 2") and the like without properly identifying the force units. But using the names kilogram, gram, kilogram-force, or gram-force (or their symbols) as units ...
The SI unit of force is the newton (symbol N), which is the force required to accelerate a one kilogram mass at a rate of one meter per second squared, or kg·m·s −2.The corresponding CGS unit is the dyne, the force required to accelerate a one gram mass by one centimeter per second squared, or g·cm·s −2. A newton is thus equal to ...
In the reference frame spinning with the centrifuge, the centrifugal force induces a hydrostatic pressure gradient in fluid-filled tubes oriented perpendicular to the axis of rotation, giving rise to large buoyant forces which push low-density particles inward. Elements or particles denser than the fluid move outward under the influence of the ...
The Rossby number is low, so the centrifugal force is virtually negligible. The pressure-gradient force is represented by blue arrows, the Coriolis acceleration (always perpendicular to the velocity) by red arrows Schematic representation of inertial circles of air masses in the absence of other forces, calculated for a wind speed of ...
[9]: 41–50 In a fluid at rest the force is perpendicular to the surface, and is the familiar pressure. In a solid , or in a flow of viscous liquid , the force F may not be perpendicular to S ; hence the stress across a surface must be regarded a vector quantity, not a scalar.
The net force exerted by the air occurs as a pressure difference over the airfoil's surfaces. [82] Pressure in a fluid is always positive in an absolute sense, [83] so that pressure must always be thought of as pushing, and never as pulling. The pressure thus pushes inward on the airfoil everywhere on both the upper and lower surfaces.
In fluid mechanics, the pressure-gradient force is the force that results when there is a difference in pressure across a surface. In general, a pressure is a force per unit area across a surface. A difference in pressure across a surface then implies a difference in force, which can result in an acceleration according to Newton's second law of ...
A body force is simply a type of force, and so it has the same dimensions as force, [M][L][T] −2. However, it is often convenient to talk about a body force in terms of either the force per unit volume or the force per unit mass. If the force per unit volume is of interest, it is referred to as the force density throughout the system.