enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.

  3. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  4. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    In mathematics, an arithmetico-geometric sequence is the result of element-by-element multiplication of the elements of a geometric progression with the corresponding elements of an arithmetic progression. The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a ...

  5. Sequence - Wikipedia

    en.wikipedia.org/wiki/Sequence

    One such notation is to write down a general formula for computing the nth term as a function of n, enclose it in parentheses, and include a subscript indicating the set of values that n can take. For example, in this notation the sequence of even numbers could be written as ( 2 n ) n ∈ N {\textstyle (2n)_{n\in \mathbb {N} }} .

  6. 1 + 2 + 3 + 4 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1_%2B_2_%2B_3_%2B_4_%2B_%E...

    The nth partial sum of the series is the ... the constant term in the Euler–Maclaurin formula for the ... alongside the divergent geometric series 1 ...

  7. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    An arithmetico-geometric series is a series that has terms which are each the product of an element of an arithmetic progression with the corresponding element of a geometric progression. Example: 3 + 5 2 + 7 4 + 9 8 + 11 16 + ⋯ = ∑ n = 0 ∞ ( 3 + 2 n ) 2 n . {\displaystyle 3+{5 \over 2}+{7 \over 4}+{9 \over 8}+{11 \over 16}+\cdots =\sum ...

  8. Pyramidal number - Wikipedia

    en.wikipedia.org/wiki/Pyramidal_number

    Geometric representation of the square pyramidal number 1 + 4 + 9 + 16 = 30. A pyramidal number is the number of points in a pyramid with a polygonal base and triangular sides. [1] The term often refers to square pyramidal numbers, which have a square base with four sides, but it can also refer to a pyramid with any number of sides. [2]

  9. List of sums of reciprocals - Wikipedia

    en.wikipedia.org/wiki/List_of_sums_of_reciprocals

    This is a particular case of the sum of the reciprocals of any geometric series where the first term and the common ratio are positive integers. If the first term is a and the common ratio is r then the sum is ⁠ r / a (r − 1) ⁠. The Kempner series is the sum of the reciprocals of all positive integers not containing the digit "9" in base 10.