Search results
Results from the WOW.Com Content Network
To use potentiometric (e.m.f.) measurements in monitoring the + concentration in place of readings, one can trivially set [+] = and apply the same equations as above, where is the offset correction /, and is a slope correction / (1/59.2 pH units/mV at 25°C), such that replaces .
The values below are standard apparent reduction potentials (E°') for electro-biochemical half-reactions measured at 25 °C, 1 atmosphere and a pH of 7 in aqueous solution. [1] [2] The actual physiological potential depends on the ratio of the reduced (Red) and oxidized (Ox) forms according to the Nernst equation and the thermal voltage.
The pH range is commonly given as zero to 14, but a pH value can be less than 0 for very concentrated strong acids or greater than 14 for very concentrated strong bases. [2] The pH scale is traceable to a set of standard solutions whose pH is established by international agreement. [3]
A calibration curve plot showing limit of detection (LOD), limit of quantification (LOQ), dynamic range, and limit of linearity (LOL).. In analytical chemistry, a calibration curve, also known as a standard curve, is a general method for determining the concentration of a substance in an unknown sample by comparing the unknown to a set of standard samples of known concentration. [1]
Pitzer equations [1] are important for the understanding of the behaviour of ions dissolved in natural waters such as rivers, lakes and sea-water. [2] [3] [4] They were first described by physical chemist Kenneth Pitzer. [5]
The actual formula for calculating a dog's age, it turns out, might mean breaking out your graphing calculator. ... 16 x ln( the natural logarithm of your dog’s age in "human years") + 31.
On a log–linear plot (logarithmic scale on the y-axis), pick some fixed point (x 0, F 0), where F 0 is shorthand for F(x 0), somewhere on the straight line in the above graph, and further some other arbitrary point (x 1, F 1) on the same graph. The slope formula of the plot is:
Substituting for the quotient in the exponent of : / = where the approximate value for R is 8.31446 J K −1 mol −1 The activation energy of this reaction from these data is then: E a = R × 12,667 K = 105,300 J mol −1 = 105.3 kJ mol −1 .