Search results
Results from the WOW.Com Content Network
As metabolic rate increases, the lifespan of an organism is expected to decrease as a direct result. The rate at which this occurs is not fixed and thus the -45° slope in this graph is just an example and not a constant. The rate of living theory postulates that the faster an organism's metabolism, the shorter its lifespan.
The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.
Two intersecting lines. In Euclidean geometry, the intersection of a line and a line can be the empty set, a point, or another line.Distinguishing these cases and finding the intersection have uses, for example, in computer graphics, motion planning, and collision detection.
Special aspects of 4-dimensional planes are treated in, [19] more recent results can be found in. [20] The lines of a -dimensional compact plane are homeomorphic to the -sphere; [21] in the cases > the lines are not known to be manifolds, but in all examples which have been found so far the lines are spheres.
Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .
For example, two distinct lines can intersect in no more than one point, intersecting lines form equal opposite angles, and adjacent angles of intersecting lines are supplementary. When a third line is introduced, then there can be properties of intersecting lines that differ from intersecting lines in Euclidean geometry. For example, given two ...
Consider the following elementary example: the intersection of a parabola y = x 2 and an axis y = 0 should be 2 · (0, 0), because if one of the cycles moves (yet in an undefined sense), there are precisely two intersection points which both converge to (0, 0) when the cycles approach the depicted position.
This proves that all points in the intersection are the same distance from the point E in the plane P, in other words all points in the intersection lie on a circle C with center E. [5] This proves that the intersection of P and S is contained in C. Note that OE is the axis of the circle. Now consider a point D of the circle C. Since C lies in ...