Search results
Results from the WOW.Com Content Network
Fine lamellae solve this problem by shortening the diffusion distance between phases, but their high surface energy makes them unstable and prone to break up when annealing allows diffusion to progress. A deeper eutectic or more rapid cooling will result in finer lamellae; as the size of an individual lamellum approaches zero, the system will ...
Phase diagram explaining how the pattern forms. First meteoric iron is exclusively composed of taenite. When cooling off it passes a phase boundary where kamacite is exsolved from taenite. Meteoric iron with less than about 6% nickel (hexahedrite) is completely changed to kamacite. Widmanstätten pattern, metallographic polished section
A lamella (pl.: lamellae) in biology refers to a thin layer, membrane or plate of tissue. [1] This is a very broad definition, and can refer to many different structures. Any thin layer of organic tissue can be called a lamella and there is a wide array of functions an individual layer can serve.
Pearlite occurs at the eutectoid of the iron-carbon phase diagram (near the lower left). Pearlite is a two-phased , lamellar (or layered) structure composed of alternating layers of ferrite (87.5 wt%) and cementite (12.5 wt%) that occurs in some steels and cast irons .
Lamellae can also describe the layers of atoms in the crystal lattices of materials such as metals. In surface anatomy, a lamella is a thin plate-like structure, often one amongst many lamellae very close to one another, with open space between. In chemical engineering, the term is used for devices such as filters and heat exchangers.
In gaps between the kamacite and taenite lamellae, a fine-grained mixture called plessite is often found. An iron nickel phosphide, schreibersite, is present in most nickel-iron meteorites, as well as an iron-nickel-cobalt carbide, cohenite. Graphite and troilite occur in rounded nodules up to several cm in size. [2]
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
The gills are composed of comb-like filaments, the gill lamellae, which help increase their surface area for oxygen exchange. [5] When a fish breathes, it draws in a mouthful of water at regular intervals. Then it draws the sides of its throat together, forcing the water through the gill openings, so that it passes over the gills to the outside.