Ad
related to: schmidt orthonormal calculator free trial program
Search results
Results from the WOW.Com Content Network
A variant of the Gram–Schmidt process using transfinite recursion applied to a (possibly uncountably) infinite sequence of vectors () < yields a set of orthonormal vectors () < with such that for any , the completion of the span of {: < (,)} is the same as that of {: <}.
The Gram-Schmidt theorem, together with the axiom of choice, guarantees that every vector space admits an orthonormal basis. This is possibly the most significant use of orthonormality, as this fact permits operators on inner-product spaces to be discussed in terms of their action on the space's orthonormal basis vectors. What results is a deep ...
In linear algebra, the Schmidt decomposition (named after its originator Erhard Schmidt) refers to a particular way of expressing a vector in the tensor product of two inner product spaces. It has numerous applications in quantum information theory , for example in entanglement characterization and in state purification , and plasticity .
The norm induced by this inner product is the Hilbert–Schmidt norm under which the space of Hilbert–Schmidt operators is complete (thus making it into a Hilbert space). [4] The space of all bounded linear operators of finite rank (i.e. that have a finite-dimensional range) is a dense subset of the space of Hilbert–Schmidt operators (with ...
In other words, the sequence is obtained from the sequence of monomials 1, x, x 2, … by the Gram–Schmidt process with respect to this inner product. Usually the sequence is required to be orthonormal , namely, P n , P n = 1 , {\displaystyle \langle P_{n},P_{n}\rangle =1,} however, other normalisations are sometimes used.
In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.
Using Zorn's lemma and the Gram–Schmidt process (or more simply well-ordering and transfinite recursion), one can show that every Hilbert space admits an orthonormal basis; [7] furthermore, any two orthonormal bases of the same space have the same cardinality (this can be proven in a manner akin to that of the proof of the usual dimension ...
The concept of orthogonality may be extended to a vector space over any field of characteristic not 2 equipped with a quadratic form .Starting from the observation that, when the characteristic of the underlying field is not 2, the associated symmetric bilinear form , = ((+) ()) allows vectors and to be defined as being orthogonal with respect to when (+) () = .
Ad
related to: schmidt orthonormal calculator free trial program