enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    Maximum subarray problems arise in many fields, such as genomic sequence analysis and computer vision.. Genomic sequence analysis employs maximum subarray algorithms to identify important biological segments of protein sequences that have unusual properties, by assigning scores to points within the sequence that are positive when a motif to be recognized is present, and negative when it is not ...

  3. Fenwick tree - Wikipedia

    en.wikipedia.org/wiki/Fenwick_tree

    A Fenwick tree or binary indexed tree (BIT) is a data structure that stores an array of values and can efficiently compute prefix sums of the values and update the values. It also supports an efficient rank-search operation for finding the longest prefix whose sum is no more than a specified value.

  4. Clique problem - Wikipedia

    en.wikipedia.org/wiki/Clique_problem

    The maximum clique problem is the special case in which all weights are equal. [15] As well as the problem of optimizing the sum of weights, other more complicated bicriterion optimization problems have also been studied. [16] In the maximal clique listing problem, the input is an undirected graph, and the output is a list of all its maximal ...

  5. Skip list - Wikipedia

    en.wikipedia.org/wiki/Skip_list

    function lookupByPositionIndex(i) node ← head i ← i + 1 # don't count the head as a step for level from top to bottom do while i ≥ node.width[level] do # if next step is not too far i ← i - node.width[level] # subtract the current width nodenode.next[level] # traverse forward at the current level repeat repeat return node.value end ...

  6. Minimum spanning tree - Wikipedia

    en.wikipedia.org/wiki/Minimum_spanning_tree

    A planar graph and its minimum spanning tree. Each edge is labeled with its weight, which here is roughly proportional to its length. A minimum spanning tree (MST) or minimum weight spanning tree is a subset of the edges of a connected, edge-weighted undirected graph that connects all the vertices together, without any cycles and with the minimum possible total edge weight. [1]

  7. k-d tree - Wikipedia

    en.wikipedia.org/wiki/K-d_tree

    Once the algorithm reaches a leaf node, it checks the node point and if the distance is better than the "current best", that node point is saved as the "current best". The algorithm unwinds the recursion of the tree, performing the following steps at each node: If the current node is closer than the current best, then it becomes the current best.

  8. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    If the solution to any problem can be formulated recursively using the solution to its sub-problems, and if its sub-problems are overlapping, then one can easily memoize or store the solutions to the sub-problems in a table (often an array or hashtable in practice). Whenever we attempt to solve a new sub-problem, we first check the table to see ...

  9. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.