Search results
Results from the WOW.Com Content Network
Depiction of where the planetary boundary layer lies on a sunny day. In meteorology, the planetary boundary layer (PBL), also known as the atmospheric boundary layer (ABL) or peplosphere, is the lowest part of the atmosphere and its behaviour is directly influenced by its contact with a planetary surface. [1]
The third layer is the mesosphere which extends from 50 km (31 mi) to about 80 km (50 mi). There are other layers above 80 km, but they are insignificant with respect to atmospheric dispersion modeling. The lowest part of the troposphere is called the planetary boundary layer (PBL), or sometimes the atmospheric boundary layer.
K-theory (eddy diffusivity/viscosity theory) is a form of local closure, and is the main first order closure scheme within the surface layer. K-theory follows a similar concept as molecular viscosity, in that the turbulent flux of a quantity is proportional to its spatial gradient, with K as the eddy viscosity/diffusivity.
The logarithmic profile of wind speeds is generally limited to the lowest 100 m of the atmosphere (i.e., the surface layer of the atmospheric boundary layer). The rest of the atmosphere is composed of the remaining part of the PBL (up to around 1 km) and the troposphere or free atmosphere.
Boundary layer meteorology is the study of processes in the air layer directly above Earth's surface, known as the atmospheric boundary layer (ABL). The effects of the surface – heating, cooling, and friction – cause turbulent mixing within the air layer.
The atmospheric surface layer is the lowest part of the atmospheric boundary layer (typically the bottom 10% where the log wind profile is valid). The ocean has two surface layers: the benthic, found immediately above the sea floor, and the marine surface layer, at the air-sea interface.
In the early-1960s, two short-lived professional leagues—the American Basketball League and the Eastern Professional Basketball League—gave the three-ball a whirl; sadly, the ABL and the EPBL ...
The Ekman layer is the layer in a fluid where there is a force balance between pressure gradient force, Coriolis force and turbulent drag. It was first described by Vagn Walfrid Ekman. Ekman layers occur both in the atmosphere and in the ocean. There are two types of Ekman layers.