Search results
Results from the WOW.Com Content Network
Microglia are a type of glial cell located throughout the brain and spinal cord of the central nervous system (CNS). [1] Microglia account for about 10–15% of cells found within the brain. [2] As the resident macrophage cells, they act as the first and main form of active immune defense in the CNS. [3]
These organisms can represent a model for the genetic analysis of adult neurogenesis and brain regeneration. There has been research that discuss how the study of “damage-responsive progenitor cells” in Drosophila can help to identify regenerative neurogenesis and how to find new ways to increase brain rebuilding.
Some plaques occur in the brain as a result of aging, but large numbers of plaques and neurofibrillary tangles are characteristic features of Alzheimer's disease. [5] The plaques are highly variable in shape and size; in tissue sections immunostained for Aβ, they comprise a log-normal size distribution curve, with an average plaque area of 400 ...
Location [ edit ] Gangliosides are present and concentrated on cell surfaces, with the two hydrocarbon chains of the ceramide moiety embedded in the plasma membrane and the oligosaccharides located on the extracellular surface, where they present points of recognition for extracellular molecules or surfaces of neighboring cells.
In general, neuroglial cells are smaller than neurons. There are approximately 85 billion glia cells in the human brain, [8] about the same number as neurons. [8] Glial cells make up about half the total volume of the brain and spinal cord. [27] The glia to neuron-ratio varies from one part of the brain to another.
Oligodendrocytes are a type of glial cell, non-neuronal cells in the central nervous system.They arise during development from oligodendrocyte precursor cells (OPCs), [8] which can be identified by their expression of a number of antigens, including the ganglioside GD3, [9] [10] [11] the NG2 chondroitin sulfate proteoglycan, and the platelet-derived growth factor-alpha receptor subunit (PDGF ...
The axolotl is less commonly used than other vertebrates, but is still a classical model for examining regeneration and neurogenesis. Though the axolotl has made its place in biomedical research in terms of limb regeneration, [19] [20] the model organism has displayed a robust ability to generate new neurons following damage.
The formula predicted an optimal brain with 3/5 (60%) of its volume occupied by neuropil. Experimental evidence taken from three mouse brains agrees with this result. The "fraction of wire is 0.59 ± 0.036 for layer IV of visual cortex, 0.62 ± 0.055 for layer Ib of piriform cortex, and 0.54 ± 0.035 for the stratum radiatum of hippocampal ...