Search results
Results from the WOW.Com Content Network
The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...
When = /, the binary entropy function attains its maximum value, 1 shannon (1 binary unit of information); this is the case of an unbiased coin flip. When p = 0 {\displaystyle p=0} or p = 1 {\displaystyle p=1} , the binary entropy is 0 (in any units), corresponding to no information, since there is no uncertainty in the variable.
The limitations of the random walker Shannon entropy can be overcome by adapting it to use a Kolmogorov–Sinai entropy. In this context, network entropy is the entropy of a stochastic matrix associated with the graph adjacency matrix ( A i j ) {\displaystyle (A_{ij})} and the random walker Shannon entropy is called the dynamic entropy of the ...
The Shannon entropy (in nats) is: = = = and if entropy is measured in units of per nat, then the entropy is given by: = which is the Boltzmann entropy formula, where is the Boltzmann constant, which may be interpreted as the thermodynamic entropy per nat.
This equation gives the entropy in the units of "bits" (per symbol) because it uses a logarithm of base 2, and this base-2 measure of entropy has sometimes been called the shannon in his honor. Entropy is also commonly computed using the natural logarithm (base e, where e is Euler's number), which produces a measurement of entropy in nats per ...
The Shannon information is closely related to entropy, which is the expected value of the self-information of a random variable, quantifying how surprising the random variable is "on average". This is the average amount of self-information an observer would expect to gain about a random variable when measuring it.
(These perspectives are explored further in the article Maximum entropy thermodynamics.) The Shannon entropy in information theory is sometimes expressed in units of bits per symbol. The physical entropy may be on a "per quantity" basis (h) which is called "intensive" entropy instead of the usual total entropy which is called "extensive" entropy.
In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons , nats , or hartleys .