Search results
Results from the WOW.Com Content Network
In physics, electromagnetic radiation (EMR) is the set of waves of an electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. [ 1 ] [ 2 ] It encompasses a broad spectrum, classified by frequency and wavelength, ranging from radio waves , microwaves , infrared , visible light , ultraviolet ...
Radiation is often categorized as either ionizing or non-ionizing depending on the energy of the radiated particles. Ionizing radiation carries more than 10 electron volts (eV), which is enough to ionize atoms and molecules and break chemical bonds. This is an important distinction due to the large difference in harmfulness to living organisms.
The rad is a unit of absorbed radiation dose, defined as 1 rad = 0.01 Gy = 0.01 J/kg. [1] It was originally defined in CGS units in 1953 as the dose causing 100 ergs of energy to be absorbed by one gram of matter.
The current version is a revised version of the original 1960 textbook Physics for Students of Science and Engineering by Halliday and Resnick, which was published in two parts (Part I containing Chapters 1-25 and covering mechanics and thermodynamics; Part II containing Chapters 26-48 and covering electromagnetism, optics, and introducing ...
Absorbed dose, total ionizing dose (total energy of radiation transferred to unit mass) ... University Physics – With Modern Physics (12th ed.). Addison-Wesley ...
Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically.
Several sources [2] [12] [3] replace nσ λ with k λ r, where k λ is the absorption coefficient per unit density and r is the density of the gas. The absorption coefficient for spectral flux (a beam of radiation with a single wavelength, [W/m 2 /μm]) differs from the absorption coefficient for spectral intensity [W/sr/m 2 /μm] used in ...
Comparison of Rayleigh–Jeans law with Wien approximation and Planck's law, for a body of 5800 K temperature.. In physics, the Rayleigh–Jeans law is an approximation to the spectral radiance of electromagnetic radiation as a function of wavelength from a black body at a given temperature through classical arguments.