enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Time in physics - Wikipedia

    en.wikipedia.org/wiki/Time_in_physics

    In the International System of Units (SI), the unit of time is the second (symbol: s). It has been defined since 1967 as "the duration of 9 192 631 770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the caesium 133 atom", and is an SI base unit. [12]

  3. Thermodynamic limit - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_limit

    The thermodynamic limit is essentially a consequence of the central limit theorem of probability theory. The internal energy of a gas of N molecules is the sum of order N contributions, each of which is approximately independent, and so the central limit theorem predicts that the ratio of the size of the fluctuations to the mean is of order 1/N 1/2.

  4. Landauer's principle - Wikipedia

    en.wikipedia.org/wiki/Landauer's_principle

    This refinement is sometimes called the Landauer bound, or Landauer limit. In 2008 and 2009, researchers showed that Landauer's principle can be derived from the second law of thermodynamics and the entropy change associated with information gain, developing the thermodynamics of quantum and classical feedback-controlled systems.

  5. Entropy as an arrow of time - Wikipedia

    en.wikipedia.org/wiki/Entropy_as_an_arrow_of_time

    Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time.As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease.

  6. Ultrarelativistic limit - Wikipedia

    en.wikipedia.org/wiki/Ultrarelativistic_limit

    In physics, a particle is called ultrarelativistic when its speed is very close to the speed of light c. Notations commonly used are v ≈ c {\displaystyle v\approx c} or β ≈ 1 {\displaystyle \beta \approx 1} or γ ≫ 1 {\displaystyle \gamma \gg 1} where γ {\displaystyle \gamma } is the Lorentz factor , β = v / c {\displaystyle \beta =v/c ...

  7. Mass in special relativity - Wikipedia

    en.wikipedia.org/wiki/Mass_in_special_relativity

    For such a system, in the special center of momentum frame where momenta sum to zero, again the system mass (called the invariant mass) corresponds to the total system energy or, in units where c = 1, is identical to it. This invariant mass for a system remains the same quantity in any inertial frame, although the system total energy and total ...

  8. Quantum spacetime - Wikipedia

    en.wikipedia.org/wiki/Quantum_spacetime

    Mass-shell hyperboloids are 'squashed' into a cylinder. The momentum generators commute among themselves but addition of momenta, reflected in the quantum group structure, is deformed (momentum space becomes a non-abelian group). Meanwhile, the Lorentz group generators enjoy their usual relations among themselves but act non-linearly on the ...

  9. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    This is a list of limits for common functions such as elementary functions. In this article, the terms a, b and c are constants with respect to x.