Search results
Results from the WOW.Com Content Network
A widely used way to compare the structures of biomolecules or solid bodies is to translate and rotate one structure with respect to the other to minimize the RMSD. Coutsias, et al. presented a simple derivation, based on quaternions, for the optimal solid body transformation (rotation-translation) that minimizes the RMSD between two sets of ...
In experimental psychology, the RMSD is used to assess how well mathematical or computational models of behavior explain the empirically observed behavior. In GIS, the RMSD is one measure used to assess the accuracy of spatial analysis and remote sensing. In hydrogeology, RMSD and NRMSD are used to evaluate the calibration of a groundwater ...
In the physics of gas molecules, the root-mean-square speed is defined as the square root of the average squared-speed. The RMS speed of an ideal gas is calculated using the following equation: v RMS = 3 R T M {\displaystyle v_{\text{RMS}}={\sqrt {3RT \over M}}}
In statistical mechanics, the mean squared displacement (MSD, also mean square displacement, average squared displacement, or mean square fluctuation) is a measure of the deviation of the position of a particle with respect to a reference position over time.
The MSE either assesses the quality of a predictor (i.e., a function mapping arbitrary inputs to a sample of values of some random variable), or of an estimator (i.e., a mathematical function mapping a sample of data to an estimate of a parameter of the population from which the data is sampled).
A molecular dynamics simulation requires the definition of a potential function, or a description of the terms by which the particles in the simulation will interact. In chemistry and biology this is usually referred to as a force field and in materials physics as an interatomic potential.
Essentially the CV(RMSD) replaces the standard deviation term with the Root Mean Square Deviation (RMSD). While many natural processes indeed show a correlation between the average value and the amount of variation around it, accurate sensor devices need to be designed in such a way that the coefficient of variation is close to zero, i.e ...
In quantum mechanics, the measurement problem is the problem of definite outcomes: quantum systems have superpositions but quantum measurements only give one definite result. [ 1 ] [ 2 ] The wave function in quantum mechanics evolves deterministically according to the Schrödinger equation as a linear superposition of different states.