enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. J. J. Thomson - Wikipedia

    en.wikipedia.org/wiki/J._J._Thomson

    He estimated the mass of cathode rays by measuring the heat generated when the rays hit a thermal junction and comparing this with the magnetic deflection of the rays. His experiments suggested not only that cathode rays were over 1,000 times lighter than the hydrogen atom, but also that their mass was the same in whichever type of atom they ...

  3. Cathode ray - Wikipedia

    en.wikipedia.org/wiki/Cathode_ray

    J. J, Thomson's electric deflection tube, in which he showed that a beam of cathode rays was bent by an electric field like matter particles. The cathode is on R. The electron beam is accelerated passing through the cylindrical high voltage anode ( center ), bent by a voltage on the deflection plates ( center L ), and strikes the back wall of ...

  4. Joule–Thomson effect - Wikipedia

    en.wikipedia.org/wiki/Joule–Thomson_effect

    In thermodynamics, the Joule–Thomson effect (also known as the Joule–Kelvin effect or Kelvin–Joule effect) describes the temperature change of a real gas or liquid (as differentiated from an ideal gas) when it is expanding; typically caused by the pressure loss from flow through a valve or porous plug while keeping it insulated so that no heat is exchanged with the environment.

  5. Thermoelectric effect - Wikipedia

    en.wikipedia.org/wiki/Thermoelectric_effect

    The Thomson coefficient is unique among the three main thermoelectric coefficients because it is the only one directly measurable for individual materials. The Peltier and Seebeck coefficients can only be easily determined for pairs of materials; hence, it is difficult to find values of absolute Seebeck or Peltier coefficients for an individual ...

  6. Townsend discharge - Wikipedia

    en.wikipedia.org/wiki/Townsend_discharge

    I 0 is the photoelectric current generated at the cathode surface, e is Euler's number, α n is the first Townsend ionisation coefficient, expressing the number of ion pairs generated per unit length (e.g. meter) by a negative ion moving from cathode to anode, and; d is the distance between the plates of the device.

  7. History of electromagnetic theory - Wikipedia

    en.wikipedia.org/wiki/History_of_electromagnetic...

    In 1896, J. J. Thomson performed experiments indicating that cathode rays really were particles, found an accurate value for their charge-to-mass ratio e/m, and found that e/m was independent of cathode material. He made good estimates of both the charge e and the mass m, finding that cathode ray particles, which he called "corpuscles", had ...

  8. Thomson scattering - Wikipedia

    en.wikipedia.org/wiki/Thomson_scattering

    Thomson scattering is a model for the effect of electromagnetic fields on electrons when the field energy is much less than the rest mass of the electron .In the model the electric field of the incident wave accelerates the charged particle, causing it, in turn, to emit radiation at the same frequency as the incident wave, and thus the wave is scattered.

  9. Timeline of condensed matter physics - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_condensed...

    1897 – J. J. Thomson's experimentation with cathode rays led him to suggest a fundamental unit more than a 1000 times smaller than an atom, based on the high charge-to-mass ratio. He called the particle a "corpuscle", but later scientists preferred the term electron. [52]