enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gekko (optimization software) - Wikipedia

    en.wikipedia.org/wiki/Gekko_(optimization_software)

    GEKKO is an extension of the APMonitor Optimization Suite but has integrated the modeling and solution visualization directly within Python. A mathematical model is expressed in terms of variables and equations such as the Hock & Schittkowski Benchmark Problem #71 [ 2 ] used to test the performance of nonlinear programming solvers.

  3. Unit commitment problem in electrical power production

    en.wikipedia.org/wiki/Unit_Commitment_Problem_in...

    Chance-constrained optimization approaches. The combination of the (already, many) traditional forms of UC problems with the several (old and) new forms of uncertainty gives rise to the even larger family of Uncertain Unit Commitment [4] (UUC) problems, which are currently at the frontier of applied and methodological research.

  4. HiGHS optimization solver - Wikipedia

    en.wikipedia.org/wiki/HiGHS_optimization_solver

    The SciPy scientific library, for instance, uses HiGHS as its LP solver [13] from release 1.6.0 [14] and the HiGHS MIP solver for discrete optimization from release 1.9.0. [15] As well as offering an interface to HiGHS, the JuMP modelling language for Julia [16] also describes the specific use of HiGHS in its user documentation. [17]

  5. Second-order cone programming - Wikipedia

    en.wikipedia.org/wiki/Second-order_cone_programming

    Some engineering applications of SOCP include filter design, antenna array weight design, truss design, and grasping force optimization in robotics. [4] Applications in quantitative finance include portfolio optimization ; some market impact constraints, because they are not linear, cannot be solved by quadratic programming but can be ...

  6. List of optimization software - Wikipedia

    en.wikipedia.org/wiki/List_of_optimization_software

    The use of optimization software requires that the function f is defined in a suitable programming language and connected at compilation or run time to the optimization software. The optimization software will deliver input values in A , the software module realizing f will deliver the computed value f ( x ) and, in some cases, additional ...

  7. Feasible region - Wikipedia

    en.wikipedia.org/wiki/Feasible_region

    For example, if the feasible region is defined by the constraint set {x ≥ 0, y ≥ 0}, then the problem of maximizing x + y has no optimum since any candidate solution can be improved upon by increasing x or y; yet if the problem is to minimize x + y, then there is an optimum (specifically at (x, y) = (0, 0)).

  8. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in probably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  9. Nelder–Mead method - Wikipedia

    en.wikipedia.org/wiki/Nelder–Mead_method

    Examples of simplices include a line segment in one-dimensional space, a triangle in two-dimensional space, a tetrahedron in three-dimensional space, and so forth. The method approximates a local optimum of a problem with n variables when the objective function varies smoothly and is unimodal .