Search results
Results from the WOW.Com Content Network
[0; 4, 4, 8, 16, 18, 5, 1, 1, 1, 1, 7, 1, 1, 6, 2, 9, 58, 1, 3, 4, …] [OEIS 100] Computed up to 1 011 597 392 terms by E. Weisstein. He also noted that while the Champernowne constant continued fraction contains sporadic large terms, the continued fraction of the Copeland–Erdős Constant do not exhibit this property. [Mw 85]
2.9 × 10 14: tech: the power the Z machine reaches in 1 billionth of a second when it is fired [citation needed] 3 × 10 14: weather: Hurricane Katrina's rate of release of latent heat energy into the air. [48] 3 × 10 14: tech: power reached by the extremely high-power Hercules laser from the University of Michigan. [citation needed] 4.6 × 10 14
n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares. Some people refer to n 4 as n tesseracted, hypercubed, zenzizenzic, biquadrate or supercubed instead of “to the power of 4”. The sequence of fourth powers of integers, known as biquadrates or tesseractic ...
From top to bottom: x 1/8, x 1/4, x 1/2, x 1, x 2, x 4, x 8. If x is a nonnegative real number, and n is a positive integer, / or denotes the unique nonnegative real n th root of x, that is, the unique nonnegative real number y such that =.
10 9: 1 gigahertz (GHz) 1.42 GHz: Electromagnetic – the hyperfine transition of hydrogen, also known as the hydrogen line or 21 cm line 2.4 GHz: Electromagnetic – microwave ovens, wireless LANs and cordless phones (starting in 1998) 2.6–3.8 GHz: A common desktop CPU speed as of 2014 5.8 GHz
The binomial approximation for the square root, + + /, can be applied for the following expression, + where and are real but .. The mathematical form for the binomial approximation can be recovered by factoring out the large term and recalling that a square root is the same as a power of one half.
Where a power of ten has different names in the two conventions, the long scale name is shown in parentheses. The positive 10 power related to a short scale name can be determined based on its Latin name-prefix using the following formula: 10 [(prefix-number + 1) × 3] Examples: billion = 10 [(2 + 1) × 3] = 10 9; octillion = 10 [(8 + 1) × 3 ...
[2] [3] [4] It is equivalent to 1 / 400 of a turn, [5] 9 / 10 of a degree, or π / 200 of a radian. Measuring angles in gradians (gons) is said to employ the centesimal system of angular measurement, initiated as part of metrication and decimalisation efforts.