Search results
Results from the WOW.Com Content Network
Nanoremediation has been most widely used for groundwater treatment, with additional extensive research in wastewater treatment. [5] [8] [9] [10] Nanoremediation has also been tested for soil and sediment cleanup. [11] Even more preliminary research is exploring the use of nanoparticles to remove toxic materials from gases. [12]
Carbon nanotubes have gained much attention for its use as wastewater and water filter. Carbon nanotube’s mechanical, electrical and chemical properties made it unique and an ideal candidate for research since 1990. Carbon nanotube combined with electrochemistry proved to be the best method for water and wastewater purification ...
Nanotechnology offers the potential of novel nanomaterials for the treatment of surface water, groundwater, wastewater, and other environmental materials contaminated by toxic metal ions, organic and inorganic solutes, and microorganisms. Due to their unique activity toward recalcitrant contaminants, many nanomaterials are under active research ...
In commercial settings, this technology has been dominantly applied to groundwater remediation, with research into wastewater treatment. [19] Research is also investigating how nanoparticles may be applied to cleanup of soil and gases. [20]
Magnetic nanobeads or nanoparticle clusters composed of FDA-approved oxide superparamagnetic nanoparticles (e.g. maghemite, magnetite) hold much potential for waste water treatment since they express excellent biocompatibility which concerning the environmental impacts of the material is an advantage compared to metallic nanoparticles.
Airborne and waterborne nanoparticles enter from building ventilation and wastewater systems. [22] Effect of nanoparticles on societal issues: As sensors become commonplace, a loss of privacy and autonomy may result from users interacting with increasingly intelligent building components. [22]
Ozone is a strong oxidizing agent widely used in the treatment of printing and dyeing wastewater, [3] and coal chemical wastewater. [4] Its solubility in water is less and stability is also poor, which will reduce the degradation capacity of ozone towards organic molecules. [ 5 ]
Nonmetallic nanoparticles and nanomaterials: Size-dependent behavior of mechanical properties is still not clear in the case of polymer nanomaterials however, in one research by Lahouij they found that the compressive moduli of polystyrene nanoparticles were found to be less than that of the bulk counterparts.