Search results
Results from the WOW.Com Content Network
The magnetic moment also expresses the magnetic force effect of a magnet. The magnetic field of a magnetic dipole is proportional to its magnetic dipole moment. The dipole component of an object's magnetic field is symmetric about the direction of its magnetic dipole moment, and decreases as the inverse cube of the distance from the object.
Magnetic moment, magnetic dipole moment: m, μ B, Π: Two definitions are possible: using pole strengths, = using currents: = ^ a = pole separation N is the number of turns of conductor A m 2 [I][L] 2: Magnetization: M
As such, the SI unit of magnetic dipole moment is ampere meter 2. More precisely, to account for solenoids with many turns the unit of magnetic dipole moment is ampere–turn meter 2. In the magnetic pole model, the magnetic dipole moment is due to two equal and opposite magnetic charges that are separated by a distance, d.
The nuclear magnetic moment is the magnetic moment of an atomic nucleus and arises from the spin of the protons and neutrons. It is mainly a magnetic dipole moment; the quadrupole moment does cause some small shifts in the hyperfine structure as well. All nuclei that have nonzero spin also have a nonzero magnetic moment and vice versa, although ...
Roughly speaking, the magnetic field of a dipole goes as the inverse cube of the distance, and the force of its magnetic field on another dipole goes as the first derivative of the magnetic field. It follows that the dipole-dipole interaction goes as the inverse fourth power of the distance. Suppose m 1 and m 2 are two magnetic dipole moments ...
In classical electromagnetism, magnetization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. Accordingly, physicists and engineers usually define magnetization as the quantity of magnetic moment per unit volume. [1] It is represented by a pseudovector M.
where is the torque, is the magnetic dipole moment, is the angular momentum vector, is the external magnetic field, symbolizes the cross product, and is the gyromagnetic ratio which gives the proportionality constant between the magnetic moment and the angular momentum.
The magnetic moment of an object is an intrinsic property and does not change with distance, and thus can be used to measure "how strong" a magnet is. For example, Earth possesses an enormous magnetic moment, however we are very distant from its center and experience only a tiny magnetic flux density (measured in tesla ) on its surface.