Search results
Results from the WOW.Com Content Network
Lyapunov proved that if the system of the first approximation is regular (e.g., all systems with constant and periodic coefficients are regular) and its largest Lyapunov exponent is negative, then the solution of the original system is asymptotically Lyapunov stable. Later, it was stated by O. Perron that the requirement of regularity of the ...
When the parameter r = 4, the behavior becomes chaotic over the entire range [0, 1]. At this time, the Lyapunov exponent λ is maximized, and the state is the most chaotic. The value of λ for the logistic map at r = 4 can be calculated precisely, and its value is λ = log 2.
An example would be plotting the , value every time it passes through the = plane where is changing from negative to positive, commonly done when studying the Lorenz attractor. In the case of the Rössler attractor, the x = 0 {\displaystyle x=0} plane is uninteresting, as the map always crosses the x = 0 {\displaystyle x=0} plane at z = 0 ...
The notion of exponential stability guarantees a minimal rate of decay, i.e., an estimate of how quickly the solutions converge. The idea of Lyapunov stability can be extended to infinite-dimensional manifolds, where it is known as structural stability, which concerns the behavior of different but "nearby" solutions to differential equations.
The real parts of the Floquet exponents are called Lyapunov exponents. The zero solution is asymptotically stable if all Lyapunov exponents are negative, Lyapunov stable if the Lyapunov exponents are nonpositive and unstable otherwise. Floquet theory is very important for the study of dynamical systems, such as the Mathieu equation.
The exact limit values of finite-time Lyapunov exponents, if they exist and are the same for all , are called the absolute ones [3] {+ (,)} = {()} {} and used in the Kaplan–Yorke formula. Examples of the rigorous use of the ergodic theory for the computation of the Lyapunov exponents and dimension can be found in. [ 11 ] [ 12 ] [ 13 ]
The value of H is determined by the initial ... by Lyapunov function ... Similarly we can analyze the case when is a large negative number . Jumps. Jumps in the ...
If, in addition, all eigenvalues of have negative real parts (is stable), and the unique solution of the Lyapunov equation + = is positive definite, the system is controllable. The solution is called the Controllability Gramian and can be expressed as W c = ∫ 0 ∞ e A τ B B T e A T τ d τ {\displaystyle {\boldsymbol {W_{c}}}=\int _{0 ...